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Abstract—Preserving a person’s privacy in an efficient manner
is very important for critical, life-saving infrastructures like
Body Sensor Networks (BSN). This paper presents a novel key
agreement scheme which allows two sensors in a BSN to agree
to a common Kkey generated using electrocardiogram (EKG)
signals. This EKG-based Key Agreement (EKA) scheme aims to
bring the ‘“plug-n-play” paradigm to BSN security whereby
simply deploying sensors on the subject can enable secure
communication, without requiring any form of initialization such
as pre-deployment. Analysis of the scheme based on real EKG
data (obtained from MIT PhysioBank database) shows that keys
resulting from EKA are: random, time variant, can be generated
based on short-duration EKG measurements, identical for a given
subject and different for separate individuals.

I. INTRODUCTION

The ability to monitor a person’s health in real-time is vital
in emergency response scenarios such as disasters, battlefield
monitoring, and individual ailments (heart-attacks, strokes).
Recent developments in low-powered electronics has lead to
the design of sensors which can perform patient monitoring
[1] [2]. These sensors usually form a network on a person’s
body in order to collect, process and store health information.
In the event of an emergency, first responders can deploy
these Body Sensor Networks (BSN) on the victims which can
then continuously monitor their vital signs, as required. The
potentially life-saving nature of services provided by BSNs
makes them a critical infrastructure.

As BSNs deal with personal health data, securing them,
especially their communication over the wireless link, is
equally critical. Lack of adequate security features may not
only lead to a breach of patient privacy but also potentially
allow adversaries to modify actual data resulting in wrong
diagnosis and treatment [3] [4]. Indeed, protecting health data
is a legal requirement as per the Health Insurance Portability
and Accountability Act (HIPAA) [5] which mandates that
all personally identifiable information be protected. Further,
emergency situations usually have a certain amount of urgency
associated with them, for example the golden hour in the event
of a heart attack [6]. Therefore, security features for BSNs
should be self-configurable and minimize large initialization
(initial setup time) overhead as much as possible.

Sensors rely on cryptographic keys to secure their commu-
nication. We define security as the ability to protect data con-
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fidentiality, integrity and to authenticate the communicating
entities. Key distribution in sensor networks usually requires
some form of pre-deployment. Prominent examples include
probabilistic key distribution [7], LEAP [8], SPINS [9], and
even asymmetric crypto-systems [10]. However, given the
progressively increasing size of BSNs (networks of size 190-
255 nodes have already been proposed [11] [12]), and the
urgency associated with their deployment in handling emer-
gency scenarios, traditional approaches may potentially in-
volve considerable latency during network initialization or any
subsequent adjustments, due to their need for pre-deployment.

In this paper we present a novel key agreement scheme
called EKG based Key Agreement (EKA), which utilizes
electrocardiogram (EKG) signals for generating cryptographic
keys. Using EKA, secure inter-sensor communication can be
executed in a “plug-n-play” manner, i.e. no network setup is
required, keys for communication are generated from the en-
vironment (body) as and when needed. Additionally, the keys
agreed upon by sensors using EKA meets the design goals
suggested for physiological value based keys in [13], namely
- the keys are long, random, time variant, generated from a
universally measurable physiological stimuli (EKG), and are
distinctive for different people. Further, EKA has an additional
property of being able to generate keys with low latency ,
i.e. requires only a small duration of EKG measurement to
generate keys. The contribution of this paper is two fold: 1)
to show that EKG signals can be used for generating common
cryptographic keys between two nodes in BSN, 2) to show
that the keys generated meet the aforementioned design-goals,
based on data from real patients.

The paper is organized as follows: Section II presents the
related work, Section III presents the system model, and the
trust and threat assumptions. Section IV presents EKA scheme
in detail Section V presents the security analysis. Section
VI presents the performance results followed by Section VII
which presents the implementation issues pertaining to EKA.
Finally Section VIII concludes the paper.

II. RELATED WORK

The idea of using physiological signals for securing inter-
sensor communication was first introduced in [14]. Building
upon this initial idea, the authors in [15] [13] propose the use

Authorized licensed use limited to: University of Pennsylvania. Downloaded on August 13,2010 at 17:55:26 UTC from IEEE Xplore. Restrictions apply.



Sensors

A Environmental sensors
T O Physiological sensors

% B Activity sensors

System Model

Fig. 1.

of Inter-Pulse-Interval (IPI) to generate cryptographic keys.
They derive IPI from the Photoplethysmogram (PPG) and the
EKG time series by measuring the time difference between
the peaks in the EKG/PPG signal. This series of IPI values
were then encoded into binary to form a 128 bit cryptographic
key whose hamming distance was shown to vary considerably
when measured in two different people and by a few bits for
the same person. In most cases the difference could be easily
corrected using simple error correction codes.

Though the IPI meets all the requirements of a physiological
key source mentioned in [13], it has two principal drawbacks:
1) The value of IPI measured at two different sensors had
small differences under the best of circumstances. In most
cases an error correction code is required for equalizing the
keys; 2) From our own experiments with MIT PhysioBank
database (http://www.physionet.org/physiobank/), we found
that the inter-peak interval for EKG and PPG signal was on
an average 560 msec. Therefore for every second only about
1.8 IPI values can be measured. To be able to use IPI values
as keys, the authors in [13] required 67 values, which would
take about half a minute of measurement, which makes it
considerably slow for the real-time requirements of the BSN.
The EKG provides us with an alternative which possesses
the properties of IPI without its drawbacks, i.e. it produces
identical keys, and measurement for about 5 seconds is enough
to generate a key (see Section IV-A), thereby meeting our
design goal of low-latency.

In [16] the authors suggest the use of EKG signals as a
biometric to authenticate users. Their scheme requires the
creation of an EKG template and then comparing their current
EKG signals with this template to verify identity. The approach
cannot be used here because it does not meet the requirements
of a physiological key source, in that, the template is never
changed. Further, it requires an extensive initialization time
with respect to the generation of template with extensive 12
lead EKG collection, which makes it difficult to be used in a
plug-n-play manner.

III. SYSTEM MODEL

We assume a Body Sensor Network (BSN) to be a network
of physiological and environmental monitoring sensors which
are worn and/or implanted on a person called the subject. The
sensors collect health and contextual data at regular intervals
and forward it over a multi-hop network to a highly capable
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Fig. 2. Feature generation from EKG signal

sink node for further processing. We assume that the sensors
communicate through the wireless medium, as wires running
between sensors in a BSN will make it obtrusive. All sensors
are assumed to be able to measure the EKG signals. Already
physiological monitoring sensors are becoming multi-modal
and are being able to sense multiple types of stimuli [17] (see
Figure 1).

The threats faced by the BSN is primarily from adversaries
who can eavesdrop on all the traffic within a BSN, inject
messages, replay old messages, spoof node identities. The
wireless medium is therefore not trusted by the sensors. The
adversaries cannot measure EKG signals from the subject
whose BSN they are trying to attack and therefore cannot
directly know the keys being used. As BSNs are deployed
on a person and not in a remote environment, compromising
sensors is very difficult without being observed. We therefore
assume node compromise to be unlikely. Note that in this
work we focus solely on securing inter-sensor communication
within the BSN. Communication from the sink onwards can
utilize conventional security schemes such as SSL given the
considerable capabilities of the entities involved.

IV. EKG BASED KEY AGREEMENT

Secure communication between sensors in a BSN requires
the presence of identical cryptographic keys at the commu-
nicating entities. In this section we present EKG based Key
Agreement (EKA) scheme for enabling two sensors in a BSN
to agree upon a common key, which is generated based on
the EKG time series. The EKA scheme has two main aspects:
feature generation and key agreement, which we now describe.

A. Feature Generation

When two sensors in a BSN want to securely communicate
using EKG, they have to first extract features form it. We
perform a frequency domain analysis of EKG signals for gen-
erating the features. This is because the frequency components
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of physiological signals, at any given time, have similar values
irrespective of where they are measured on the body. A time-
domain analysis showed that the values of two EKG signals
measured at different parts of the body (at different leads) have
similar trend but diverse values.

The feature generation is executed by the two sensors, by
sampling the EKG signal simultaneously, at a specific sam-
pling rate for a fixed duration of time (125Hz and 5 seconds,
respectively in our case). In order to remove measurement
artifacts the signal is smoothed by removing the frequency
components that do not contribute much to the overall power
of the signal. The five second sample of the EKG signal
(producing 625 samples) is then divided into 5 parts of 125
samples each. A 128 point Fast Fourier Transform (FFT)
is then performed on each of these parts. The first 64 FFT
coefficients (due to the symmetric nature of the spectrum) of
each of the 5 parts are concatenated to form a feature vector
F of 320 coefficients. The process is illustrated in Figure 2.

To generate a key from F|, it is then quantized into a
binary stream. In this regard, we divide F' into 20 blocks
each containing 16 coefficients. The 16 coefficients in each
block are then quantized into binary. We chose to quantize
F in small blocks primarily in order to capture the small
variations in spectrum which when quantized produced keys
with higher level of entropy. We tried linear, fixed and expo-
nential quantization functions in EKA. The best results were
obtained when the quantization function used was exponential
with 12 steps. The quantization produces 4 bit binary value
for each coefficient, resulting in 20, 64 bit blocks at each of
the communicating sensors.

B. Key Agreement

Once the feature vector has been divided into blocks at
each of the two communicating sensors, they are exchanged
between them and processed before a common key can
be agreed upon. The key agreement process consists of
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Key Agreement at an arbitrary sensor in BSN

three phases: commitment phase, processing phase and
de-commitment phase.

1) Commitment Phase: In this step the nodes exchange
the blocks they generated by quantizing the FFT coefficients.
Let Byy = {b},b3,...,bL}, denote the blocks generated at an
arbitrary sensor sl. Here R is the index of the blocks and
|R| = 20 in our case. As the blocks form the basis of the final
key, they cannot be exchanged in the open. Therefore, each
block is hashed using a one-way hash function before being
transmitted. The commitment phase is carried out in two steps.

Step 1: s1 — s2 <ID, N, hash(b},N)...hash(bsy, N),
MAC(Keyr,ID,N ,hash(bi, N)...hash(bsy, N))>

Step 2: s2 — sl : <ID’, N', hash(b?,N')...hash(b3q, N'),
MAC(Keyw,ID',N' ,hash(b?, N')...hash(b3o, N'))>

Here - ID and ID’ are node ids, N and N’ are nonce
for maintaining transaction freshness and also acted as salt to
prevent potential dictionary attacks, hash is a one way hash
function and assumed to be secure (we utilized SHA — 256
hash function in our experiments, any future reference to
hash assumes the usage of the same hash function) MAC
is the message authentication code, and Keygr and Keyl, are
random keys generated at each sensor (and at this point are not
known to the other sensor). The presence of the MAC commits
the sensors to their blocks, and will be used (in later steps) to
detect adversaries. Note that we recommend that Keyr and
Key, be at least 128 bit long in order to prevent brute-force
guessing.

2) Processing Phase: Once the hashes of the blocks have
been exchanged, each node arranges the received hash values,
and the hashes of the local blocks into two 20 x 64 matrices.
Let U and V be the two matrices, respectively. A matrix W
of dimensions 20 x 20 is then computed from U and V, such
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that each element W (4, j) is equal to the hamming distance
between the i th row of U and the j th row of V, where
1 < 7,7 < 20. The matrix W is used to identify the indices
of the blocks which are identical at both the sensors. This is
done using the function KeyGen, described below, to derive
the common key.

KeyGen(WW)

l. Key = ¢

2. KeyMat = ¢

3. while (all W (z,j) # 1) do

(i, ) = min(W)

if (min(W) == 0)
KeyMat = KeyMat + b}
Wii,k)=1V1<k<20
Wiu,j) =1V 1<u<20

. else

10. return error

11. end if

12. end while

11. Key = hash(KeyMat)

12. return Key

R A

The vector KeyMat is a collection of blocks (not their
hashed values) which are identical at the communicating
sensors. The common key Key is generated by hashing
KeyMat. Depending upon the hash function used, the size
of key would vary. We recommend the use of a hash function
which produces an output as long as Keyr and Keyf, i.e. at
least 128 bits (if the output of the hash is longer we simply
drop the extra bits). All commonly used hash functions such as
MD5 and SHA256 meet this requirement, fulfilling our design
goal of generating long key.

3) De-commitment Phase: Now that a key has been
generated at the communicating sensors, they use it to verify
the legitimacy of the blocks received in the commitment
phase. To do so, they exchange the following messages:

Step 3: s1 — 52 :< G = Keyr ® KeyA,MAC(KeyA, G)>
Step 4: s1 — 52 :< G = Keyy ® KeyB,MAC(KeyB, G)>

Here KeyA and KeyB are the keys generated during the
processing phase at arbitrary sensors s1 and s2 (located on
the same person), respectively, which should be identical. The
sensors first verify the MAC in the messages received in de-
commitment phase using their KeyA and KeyB, respectively.
If the verification is successful, the nodes extract KeyAR
and Keyp, by XOR-ing KeyA and KeyB with G and G,
respectively, which is then utilized to evaluate the MAC in the
commitment phase. If the second evaluation is successful, the
keys are accepted, otherwise not. Figure 3 shows the execution
of three phases.

Given the value of KeyA and KeyB, the two sen-
sors generate temporary keys Kiemp = hash(KeyA,l) =
hash(KeyB,!) for performing actual communication, where
! is a random number. This protects the actual key from
compromise, the sensors can further generate new temporary
keys by varying the value of [ from time to time, allowing
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the key generated using one set of EKG measurements for
multiple communication sessions if need be.

V. SECURITY ANALYSIS

An inherent problem with EKA is the length of the blocks
it communicates during the commitment phase. As they are
only 64 bits long, their hashes can be easily brute-forced
by a capable adversary. One of the ways of overcoming this
problem could be to use key strengthening. The main idea
being that sensors hash each of their 64 bit blocks *2"’ times
before transmitting them. An attacker while brute forcing has
to generate a candidate block (64 bits long) and hash it *2™’
times before knowing weather the candidate is the actual
block. Therefore an additive increase in the number of hash
computations for the sender results in a multiplicative increase
in the hashing requirements for the adversary. This results
in a 2" fold increase in the processing required for brute-
forcing a 64 bit block which is analogous to brute forcing
a 64 + n bit block. We recommend that sensors choose the
value of 'n’ as high as possible. However, key strengthening
is an expensive proposition. The need to hash each of the 20
blocks 2" times increases the costs further. For example if we
choose 'n’ to be 16 (which makes the block as secure as a
80 bit block) the total number of hash operations required to
computed would be 131072!. The choice of this value actually
used therefore, may depend upon the capabilities of the sensor
and the amount of energy available at them, and hostility of
the environment in which the subject carrying the sensors is.
In a home environment for example, no key strengthening may
be required, while in a shopping mall the maximum possible
value of 'n” would be necessary. The use of key strengthening
is however a stop-gap solution, we are currently working on
generating longer blocks during the commitment phase so that
brute-forcing them becomes impractical.

Assuming that the brute forcing of blocks is infeasible, the
commitment and de-commitment phases makes it very difficult
for adversaries to know the key being agreed upon. There
are 4 reasons for this - a) The blocks are not exchanged
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directly, their hashes are, which gives no indication to their
actual values; b) Any modification of the blocks being ex-
changed during agreement would be caught as soon as the de-
commitment phase reveals the random key (Keyr or Keyp),
and the MAC received in commitment phase is verified; c)
The random key itself cannot be guessed from the message
de-commitment phase as KeyA and KeyB are random enough
to prevent guessing (see Section VI) and vice-versa; and d) If
an adversary poses as legitimate node (trying to form a key
with an arbitrary node s2) and replays a previously captured
message in Steps 1 and 3, then the message in Step 1 will be
rejected outright by s2 as the nonce (/V) would be identical
to a previously used value. If the adversary updates the nonce
value during Step 1, it will still not succeed because the KeyB
generated by s2 would have changed (from the one which
was used during the exchange, whose messages are now being
replayed by the adversary), prompting s2 to reject the whole
key agreement process.

VI. PERFORMANCE ANALYSIS

In this section we analyze the characteristics of the key
generated by EKA in terms of our design goals of random-
ness, time-variance and distinctiveness. The analysis utilizes
actual EKG data from 31 subjects obtained from the MIT
PhysioBank database (http://www.physionet.org/physiobank/)
for our validation. Each data value has a time-stamp associated
with it, as the data was sampled at 125Hz, there is one EKG
value every 8 msec. The EKA implementation and analysis
was done using Matlab. In this section section, the notations
KeyA and KeyB are used to denote keys generated by arbitrary
sensors s1 and s2 (located in the same BSN) which are in the
process of exchanging keys, respectively.

A. Distinctiveness

Our first experiment was to determine if the keys generated
by the EKA scheme are distinctive for different people, i.e.
produced identical keys at the same subject and divergent
keys between two different subjects. Data from one lead was
used to generate KeyA, and another to generate KeyB. For
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each subject the EKA scheme was executed over 100 random
start-times and the average hamming distance between keys
was computed. Figure 4 shows the result at a random start-
time. The x-axis represents KeyA of all patients and y-axis
represents KeyB for all patients. The colors represent the
range within which the actual hamming distance between
the two keys falls. It can be seen that all diagonal values
are zero, which indicates that the keys generated from EKG
signals of the same subject are identical, while keys from
two different subjects are however not. The average hamming
distance between keys generated from EKG of two different
subjects was about 49.99% (= 64 bits). As the adversary does
not know which 64 bits are different, guessing the correct
key would require (16%18) attempts which is identical to brute-
forcing a 124 bit key. The keys agreed upon through EKA
meet our design goal of distinctive.

B. Randomness

Having long and distinctive keys is not enough, we need
to ensure that they are unpredictable as well. To evaluate
this, we computed the entropy of the keys generated for each
subject over 100 random start-times. We found that in all
cases the entropy values were close to 1 (see Figure 5), which
signifies that the distribution of 1s and Os in the key was
quite uniform. However, entropy alone does not guarantee
randomness, a key of length n with n/2 consecutive zeros
followed by n/2 consecutive ones will also generate a high
entropy. To ensure that our keys do not have large runs of
zeros and ones, we tested each key generated by EKA using
the two-tailed Runs-Test with a significance level of 5%.
For each subject we executed the runs test for both KeyA
and KeyB generated over 100 start-times. Only about 2%
of keys generated failed the Runs-test. To ensure that the
keys generated are random enough, once the communicating
sensors have computed KeyA and KeyB, they could test the
values for randomness. If the values turn out to be non-random
the scheme could be executed again with a new set of EKG
readings. The keys agreed upon through EKA meet our design
goal of randomness.

C. Temporal Variance

We then evaluated the EKA generated keys for temporal
variance in order to ensure that a new measurement of the
EKG signals would not lead to the same keys. For each subject
we computed the KeyA using data from 100 random start
times and averaged the distance between the keys (as KeyB
is same as KeyA it is not considered here). The minimum
distance between any two KeyA’s for a subject was about
49.98% (=~ 64 bits). Therefore even if the current value of
KeyA or KeyB generated from a subject is known, it does not
necessarily make knowing the value of KeyA or KeyB from
subsequent measurements any easier. The keys agreed upon
through EKA meet our design goal of temporal variance.

VII. IMPLEMENTATION ISSUES

In this section we discuss some of the issues pertaining
to the implementation of the EKA scheme. It involves three
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main steps: EKG measurement, feature extraction, and key
agreement. In order to be able to use EKA, the sensors have
to be able to start measuring the EKG values at both the
communicating sensors more or less simultaneously. If the
measurement start-times are far apart the features derived
may not be similar at both ends, due to the time variant
nature of EKG. One advantage of using frequency domain
features is that the required level of synchronization is not
very strict. Our experiments show good results even with a
40 msec skew start of the EKG measurement at either of the
sensors. If EKG signals were be analyzed in time domain, the
level of synchronization would be limited by the sampling
rate (f). For example if the sampling rate is 125Hz then
a data value is generated every 8 msec. To ensure no data
points are missed at either sensors, the sensor clocks have
to be synchronized to within 8 msec. Given that existing
synchronization protocol for sensor networks such as [18]
can achieve 1 psec synchronization, any such scheme can be
applied here. The feature selection aspect of EKA requires
the implementation of 128 point FFT on the sensors. In
[19], the authors have proposed the use of dedicated FFT
processor in the sensor architecture. Their design can perform
variable length FFT (128 point to 1024 point FFT) on a sensor
with an energy dissipation of 155nJ per FFT computation
at a supply voltage of 350 mV and a clock frequency of
10 KHz. The processor, implemented using 0.18 ym CMOS
technology will add only a small footprint to sensors. The
key agreement aspect is the simplest of the three steps. It
involves the computation of hashes, and comparing blocks
of bits, and generating pseudo-random numbers which are
relatively simple to implement on any platform such as TinyOS
(http://www.tinyos.net). Currently we are in the process of
implementing EKA on the Ayushman health monitoring test-
bed [20] at the IMPACT Lab at Arizona State University.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel means of using EKG
signals for distributing keys to enable secure inter-sensor
communication. We further showed that it meets all the design
goals we set forth for using physiological values for generating
keys. Our security analysis and simulation studies show EKG
can be used for generating keys in a BSN. In the future we
are planning to improve the security of the EKA scheme by
increasing the exchanged block size, implement the scheme
on actual hardware, evaluate the key generated in more detail,
and analyze the performance of the scheme in terms of
computational and other overheads.
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