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ABSTRACT
Ensuring security of private health data over the communication
channel from the sensors to the back-end medical cloud is crucial
in a mHealth system. This end-to-end (E2E) security is enabled by
distributing cryptographic keys between a sensor and the cloud so
that the data can be encrypted and its integrity protected. Further,
the key can also be used for mutually authenticating the communi-
cation. The distribution of keys is one of the biggest overheads in
enabling secure communication and needs to be done is a transpar-
ent way that minimizes the cognitive load on the users (patients).
Traditional approaches for providing E2E security for mHealth sys-
tems are based on asymmetric cryptosystems that require extensive
security infrastructure. In this paper, we propose a novel proto-
col, Physiology-based End-to-End Security (PEES), which pro-
vides a secure communication channel between the sensors and the
back-end medical cloud in a transparent way. PEES uses: (1) phys-
iological signal features to hide a secret key, and (2) synthetically
generated physiological signals from generative models parameter-
ized with patient’s physiological information, to unhide the key.
Moreover, in PEES authentication comes for free since only sen-
sors on the user’s body has access to physiological features and
can therefore gain access to the protected information in the cloud.
The analysis of the approach using electrocardiogram (ECG) and
phototplethysmogram (PPG) signals and their associated models
demonstrate the feasibility of PEES. The protocol is light-weight
for sensors and has no pre-deployment or storage requirements and
can provide strong and random keys (≈ 90 bits long). We have also
started clinical studies to establish its efficacy in practice.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection; C.2.1 [Network Architecture and De-
sign]: Wireless Communication

1. INTRODUCTION
Lifelong monitoring of health has been recently prescribed as an
effective remedy to potentially life threatening diseases that have
∗The works of Ayan Banerjee and Sandeep K.S. Gupta are sup-
ported by the NSF grants CNS-0831544 and IIS-1116385.

congenital roots, such as congenital heart diseases [1]. Mobile
healthcare (mHealth) is a technological oasis that promises the fea-
sibility of lifelong monitoring. In mHealth systems, a network
of wireless medical sensors and actuators are deployed on a per-
son (also referred to as the user), for enabling pervasive, individ-
ualized, and real-time health data collection, diagnosis, and criti-
cal actuation. The storage, computation, and visualization of the
huge amount of data collected by the system is enabled by the
massive computation resource of a medical cloud (referred to as
the cloud from now on). The sensors may forward data to the
cloud either directly or through an intermediate base-station. Care-
givers and the user can view the collected health information di-
rectly from the cloud using a smart-phone app or over the web in
real-time and act on it as required. As mHealth systems deal with
personal health data, ensuring information security, especially over
the communication channel from a sensor to the cloud, is very crit-
ical. Lack of adequate security capabilities may not only lead to
a breach of patient privacy, but also potentially allow attackers to
compromise patient safety by modifying actual physiological data,
resulting in wrong diagnosis and treatment [6, 18]. Protecting per-
sonally identifiable health data is also a legal requirement as per
the Health Insurance Portability and Accountability Act (HIPAA)
(http://www.hhs.gov/ocr/hipaa/). Thus, with the possibility of life-
long monitoring comes the requirement of lifelong security.

It is understood that the properties of confidentiality, integrity and
authenticity need to be preserved as the health data in a mHealth
system is transmitted from the sensors that measure them to the
medical cloud, which stores and processes the data. One way of
enabling this end to end security is to distribute cryptographic keys
between a sensor sender and the cloud receiver. The data can now
be encrypted and integrity protected, while the presence of the ap-
propriate key proves the authenticity of the communicating entities.
In the rest of the paper, we assume that the keys used for commu-
nication in our system model are symmetric cryptographic keys.
Although asymmetric cryptography based on Elliptic Curves have
been used for communication in a sensor network domain [7, 8],
it is still much more expensive to use them for regular data ex-
change. Additionally, they are prone to man-in-the-middle attacks
and need additional authentication mechanisms to be useful. This
distribution of symmetric cryptographic keys is one of the biggest
overhead in communication security.

Our approach to establishing a secure communication channel from
the sensors to the cloud relies on the end-to-end argument [15].
In many traditional approaches, secure communication in mHealth
settings requires securing two hops individually. The first one is
from a sensor to the base-station. If the the sensors form a multi-
hop network, then we have one additional step — securing inter-



sensor communication. Once the data reaches the base-station, it
then has to be securely transmitted to the cloud. This is usually
done with some form of asymmetric cryptosystem. The problem
with this hop-by-hop approach is that it is too cumbersome to man-
age. We need to secure at least two (three if one considers inter-
sensor links) individual links each of which has different properties
and involve heterogeneous devices with different capabilities. Fur-
ther, any solution that requires the base-station to play a role in
secure transfer of user health data to the cloud is fraught with prob-
lems especially because such base-station, usually external to the
user, can be compromised. This is not to say that the base-station
should be eliminated, because that would mean the sensors would
need the capability to directly communicate with the cloud, which
might not be ideal in all situations. What we argue for, is that secure
transfer of data from a sensor to the cloud should not depend on the
base-station. Hence, we need a security solution that establishes
an end-to-end (E2E) communication channel between a sensor and
the cloud. That way, even if the intermediate communication chan-
nel or nodes are compromised, there is minimal loss of sensitive
medical data.

In this paper, we propose Physiology-based End-to-End Security
(PEES), which provides E2E key distribution in a mHealth setting
between a sensor and the cloud with minimal user/administrator in-
volvement. It requires no a priori distribution of keying material.
Simply deploying the sensors on a user is enough, thus facilitat-
ing secure E2E communication that is transparent to the user itself.
In PEES sensors use physiological signal based features to hide
the keying material through a cryptographic primitive called the
vault. At the cloud, the vault is opened with a diagnostically equiv-
alent physiological signal time-series generated using a generative-
model that has been parameterized with the user’s physiological
information [11]. The idea of using physiological-signal-based fea-
tures for key agreement comes from the observation that the human
body is dynamic and complex, and the physiological state of a sub-
ject is quite unique at a given time [20]. Any sensor without access
to the vital signs of the user or a model of the signals will be un-
able to update or access the user’s data in the cloud. The successful
execution of PEES automatically authenticates the communicating
entities (i.e., sensors and the cloud). In our previous work, we pro-
posed a secure inter-sensor key agreement approach based on phys-
iological signals [18]. However, the technique only enabled two
sensors sensing the same physiological signals to communicate se-
curely. In this paper, we propose a technique for establishing a
secure channel between a sensor and the cloud, which is not privy
to the user’s physiological data, but has access to a trained model.
In designing PEES, we aspire to meet the following design goals:

- Cryptographically Strong keys: distribution of keys that are ran-
dom and long.

- Secure Key Distribution: distribution of keys between a sensor
and the cloud such that there is no leakage of keying information.

- Long term security: maintaining freshness of keys between a sen-
sor and the cloud for a long term and providing the ability to add
and remove sensors without interruption in monitoring.

- Minimal user involvement: execution of the key distribution with
minimal user involvement (i.e., transparently) as the users of this
system are not expected to be tech-savvy.

The contributions of this paper are three fold: (1) a scheme, PEES,
for E2E key distribution between sensors and the cloud that is se-

cure and transparent to the users, (2) analysis of PEES’ feasibility
and security properties and (3) validation of PEES, using actual
data from two of the most commonly collected physiological sig-
nals: photoplethysmogram (PPG) and electrocardiogram (ECG).

2. SYSTEM MODEL
The system model for providing mHealth services considered in
this paper is shown in Figure 1. At the core of the system is a set
of wireless sensors that are either worn on or implanted in the user.
The sensors may be invasive e.g., glucose meters, contact-based
(therefore less invasive) e.g., ECG or PPG, or environmental such
as temperature and humidity monitors. Actuating devices such as
infusion pumps, can also be used in mHealth. However, we do
not consider them explicitly for this work to keep the discussion
simple. The sensors sense physiological as well as environmental
signals at a given sampling rate. The goal of the system is to collect
data from the sensors and forward them to a medical cloud. In
general, mHealth systems may have two configurations:

- Configuration 1: The mHealth sensors are equipped with a WiFi
or cellular radio so that they can have direct communication with
the medical cloud. This configuration can be used in monitoring
mobile patients in a hospital or in a home environment, where rela-
tively capable sensors are used for monitoring and the patients are
not particularly ambulatory.

- Configuration 2: This configuration includes an extra device in
between the sensors and cloud called the base-station. The base-
station can be implemented on a variety of devices from generic
smart phones to customized dongles [2]. The second configuration
is useful for monitoring or in rehabilitation for patients who are not
confined to their homes or a care facility. The base-station in an
mHealth system, can be used to perform one or more of the two
following tasks: (a) forward the data collected from the sensors to
the cloud for storage and processing, and (b) visualize the health
data in a smart phone based base-station in a meaningful manner.

In both configurations, a caregiver has to download the data from
the cloud for reference, diagnosis and treatment.

2.1 Trust and Threat Model
We now present our trust assumptions along with assumptions re-
garding the attackers i.e. the threat model:

- Sensors: All the sensors in our mHealth system are assumed to be
trustworthy. That is, it is not possible for attackers to compromise
an existing sensor within the system without the patient noticing.

- Communication Links: The communication links within our sys-
tem are not trusted. We assume attackers can passively eavesdrop
(sniff) on all communication and can perform complex signal pro-
cessing on physiological signals. However, any brute force attack
is still time consuming for the attacker. Further, the attacker can ac-
tively introduce bogus data into the network. However, we assume
that there are no jamming and denial-of-service attacks, where le-
gitimate devices cannot communicate with each other. We make
this assumption because such an attack would be detected quickly
and we assume our attackers would employ stealthier techniques.

- Base-station: Even though the attacker may not be able to physi-
cally compromise the sensors we assume they can compromise the
base-station itself. If the base-station is a smart-phone then the at-
tackers can compromise the apps on it as well.
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Figure 1: System model for mHealth security.

- Cloud: The medical cloud is assumed to be trustworthy. Care-
givers are provided information about the patients from the cloud
only upon their successful authentication.

- Caregivers/ Patients: They are assumed to the trustworthy not
influenced by the attacker.

- Patient’s Body: We assume the attacker can come physically close
to the mHealth user and can also have physical contact (e.g., shake
hands with the patient) so that the electrical signals of the user can
get coupled with those of the attacker [3]. However, the attacker
cannot introduce malicious sensors into our system. Further, we
assume that no patient health data from the past or features derived
from it are known to the attacker.

3. PROBLEM STATEMENT
In this paper we consider the problem of assuring E2E security of
physiological data transfer for mHealth systems. That is, we want
to ensure the confidentiality and integrity as the patient data gets
transmitted from a sensor to the cloud. The approach we take in this
regard is to establish a pair-wise symmetric key between the sensors
and the medical cloud. Once the key distribution has happened,
then E2E security can be enabled by encrypting data at the sensors
and decrypting them at the cloud. One of the simplest approach
is to explicitly program the sensors and the cloud with appropriate
cryptographic keys. This can be problematic as it requires consid-
erable configuration of the sensors as they are introduced within the
system. Further, we envision a future, where the sensors are pur-
chased over the counter and added to the mHealth system on the go
and still be able to perform secure data collection. As mHealth sys-
tems will typically be used by people without technical or security
training, we want to develop security solutions that are transparent
to the users and require minimal configuration.

Approach: We approach this problem (Section 5.1) based on two
observation (1) features derived from certain physiological signals
are complex, dynamic and unique enough to be useful for hiding
the keying material, (2) certain physiological signals can be syn-
thetically generated using generative models when appropriately
parameterized with user health information based features. The
model parameters have to be initially transferred securely to the
cloud (discussed in Section 5.2). The model in the cloud however,
is not static and hence requires regular updates, which also needs
to be tackled in a secure manner (Section 5.3). We instantiate the
proposed protocol using two types of signals, ECG and PPG and
validate our basic hypothesis of using models and physiological
signals to achieve E2E security (Section 6).

4. PRELIMINARIES
In this section we focus on some important concepts that our end-
to-end security solution leverages - physiological signal-based key
agreement and generative models of physiological signals.

4.1 Key agreement using physiological signals
The variability in the human physiology can be used to derive fresh
cryptographic keys for secure communication between two sen-
sors [4,18,19]. Sensors sensing the same physiological signal e.g.,
PPG sensors on the left and right arms or different leads of ECG
sensor, can use common physiological signatures to hide and un-
hide a secret key. In this protocol one sensor, the sender, generates
a random key and hides it using frequency-domain features gen-
erated from recently measured physiological signals with crypto-
graphic construct called the vault. The vault is then transferred to
the other sensor, called the receiver, which then uses its own set of
frequency-domain features generated from concurrently measured
(with the sender) physiological signals to un-hide the random key.

The key hiding using physiological features is a light-weight signal
processing algorithm that executes at the sender [18]. The sender
senses physiological signals for a given time and derives frequency
domain features. The sender then generates a random 128 bit key
and splits it into n + 1 coefficients of a nth order polynomial. The
features are then transformed using the polynomial to form a set of
ordered pairs (x, y) of feature values and their polynomial evalua-
tions. This set is then obfuscated with random pairs (x′, y′) called
chaff points, such that y′ is not the polynomial evaluation of x′.
The ordered pairs and the chaff points together form the vault. This
vault is then sent to the receiver, which has its own set of 16-bit fea-
tures generated from concurrently measured physiological signals.
As long as the receiver has more than n+1 features in common with
the sender, it can use Lagrangian interpolation to reconstruct the
polynomial and obtain the secret key from its coefficients. Since
there is a high degree of commonality between the physiological
features derived by the two sensors that measure a physiological
signal concurrently, the receiver is successful in deriving the secret
key from the vault. However, if this vault is received by an attacker
who does not have access to the patient data, it has to go through all
possible combination of n + 1 points out of total number of points
in the vault which is combinatorial in order. For example with a 9th
order polynomial and 4000 point vault, the complexity for the at-
tacker to break the vault is equivalent to brute-forcing a 95-bit key.
In this paper, we use this result to propose an E2E security scheme
using generative physiological models.

4.2 Generative physiological models
Generative models of physiological signals are mathematical func-
tions, which take personalized temporal and morphological param-
eters as input and output synthetic physiological signals, diagnos-
tically equivalent to actual physiological signals [11, 12]. A gener-
ative model requires two types of parameters - temporal and mor-
phological. The temporal parameters change frequently over time.
They may include physiological parameters such as the heart rate
and the standard deviation of the heart rate. Despite the consider-
able dynamics of the human body, an important characteristic of
human physiology is the periodicity of the waveform of its var-
ious physiological signals. The waveform shape within a period
is called the morphology of the signal. Typically, a generative
model expresses the morphology by using a set of mathematical
functions. The parameters of this function are called morphology
parameters. It has been observed that for the ECG and the PPG
signals the morphology parameters change very slowly over the
lifetime of a person and hence is a physiological signature [10].



To use a generative model for synthesizing physiological signals
the morphology parameters have to be learned from a sample of
the actual physiological signal. The temporal properties too have
to be obtained from the actual physiological signals, but obviously
in real time. Finally, though generative models produce diagnos-
tically equivalent signals, the synthesized and actual physiological
signals may not match sample for sample. They only match in cer-
tain features deemed useful for diagnosis of critical health problems
as suggested by a physician. In this section, we will briefly discuss
generative models for both the ECG and the PPG signals developed
in our previous work.

Numerous generative models for various physiological signals have
been proposed. In this paper we use two models, one for the ECG
and another for the PPG signals. For the ECG we use the well
accepted ECGSYN model proposed by McSherry et al [10] while
for the PPG we use the DE-PPG model [12].

ECGSYN uses inter-beat temporal variability parameters, which
includes the mean heart rate, standard deviation of heart rate and
LF/HF ratio as temporal parameters. For morphological parame-
ters, ECGSYN represents each of the P, Q, R,S, and T waves of
ECG by a Gaussian curve. Each curve has three parameters and
hence, there are a total of 15 morphological parameters (aP, aQ, aR,
aS , aT , bP, bQ, bR, bS , bT , θP, θQ, θR, θS , θT ). The ECG curve is
expressed using Equation 1.

dECG(t)
dt

= −
∑

i∈P,Q,R,S ,T

ai(2πhrmeant − θi)e
( −(2πhrmeant−θi )2

2b2
i

)
, (1)

where hrmean is the mean heart rate of the person. To obtain the
parameters of ECGSYN for a given user, a set of 256 inter-beat
interval values are obtained from the given ECG data. To calcu-
late the LF/HF ratio, the Power Spectral Density (PSD) of this set
is computed. The Low Frequency (LF) and High Frequency (HF)
components is then obtained by integrating the PSD over the ranges
(0.04Hz - 0.15Hz) and (0.15Hz - 0.4Hz) respectively. The ratio
between these components gives the value of the lfhfratio param-
eter. The hrmean and hrstd values are obtained by averaging and
computing the standard deviation on the set of R-R interval values,
respectively. Among the morphology parameters, (θP, θQ, θR, θS ,
and θT ) are calculated by detecting the relative locations of the P,
Q, R, S and T peaks respectively. The remaining parameters are
calculated through curve fitting using a mean squared error mini-
mization approach.

The DE-PPG model characterizes the shape of a PPG pulse us-
ing differential equations, and is based on a Windkessel model of
the human vascular system [5]. The signal is split into two parts
- systole and diastole. The diastole is modeled using the equation
PPGdias(t) = a1 + a2e−a3t + 1

a4 +e(−a5 t−a6) cos(a7t + a8). For the systole,
an analytical driving left ventricular pulse waveform is considered,
using a single logistical function, as PPGsys(t) = 1

a9+e(−a10 t−a11) . The
coefficients [a1, a2, . . . , a11] in the above equations are the mor-
phological parameters. The temporal parameters include the mean
heart rate, standard deviation of heart rate and the LF/HF ratio.

5. E2E SECURITY FOR MHEALTH
In this section, we present Physiology-based End-to-End Security
(PEES), a scheme that establishes a secure communication channel
between a sensor and the medical cloud in a transparent manner.
The idea is to use the complexity and randomness of the physiolog-
ical signals form the human body to make sensors agree on a secret
cryptographic key with the cloud. In our previous work [18,19], we

utilized synchronously measured physiological signal-based fea-
tures to enable key agreement between two sensors on the patient’s
body. The entire process of key distribution is transparent, as the
user simply needed to deploy the sensors, and the key distribution
happens automatically, in a plug-n-play manner. However, both
sensors were required to be located on the user’s body, so they
could measure the same underlying physiological signal and per-
form key agreement. When it comes to E2E security however, the
medical cloud is not privy to the physiological signals. In such a
setting our original scheme has to be transformed to provide E2E
key distribution while maintaining its transparent nature. This is
achieved by use of generative models at the cloud.

5.1 Physiology-based End-to-End Security
PEES works by first measuring the physiological signal of choice,
extracting features from it and using the features to create a vault as
described in Section 4.1. This vault is then transmitted to the cloud,
which tries to open it with physiological features from synthesized
physiological time-series obtained using a generative model of the
physiological signal. These generative models output synthetic sig-
nals that are diagnostically equivalent to the original physiologi-
cal signals and can be used to generate features that are common
enough with the sender to be able to open the vault.

More formally, let pi represent the time-series of a physiological
signal i. Let Gi be the generative model of the signal i. Gi takes
as input the time-domain features, fi, (e.g, heart rate variability for
ECG or PPG) and morphological features mi, (e.g., parameters of
equations in Section 4.2) and a time t as input to generate the phys-
iological signal value at time t. Thus, the function Gi( fi,mi, t) rep-
resents the synthesized signal at time t. The generative model is
pre-loaded at the cloud and is parameterized with the user’s phys-
iological time-domain and morphological features. We will see in
the next section that this can be done relatively easily and securely.
Given the physiological signal of choice and its generative model,
the following steps are performed by a sensor on the user’s body to
perform key distribution between itself and the cloud:

1. Sample the physiological signal pi from time t to t + ∆t and
apply a transformation to obtain current physiological signa-
ture of user S sender = Tr(pi(t . . . t + ∆t)). This transformation
consists of FFT computation, peak detection of the FFT se-
ries and quantization of the peaks.

2. Generates a random key Ks of arbitrary length (128-bits).

3. Divide the key into q + 1 equal parts c0 . . . cq where q is the
order of a polynomial previously agreed, in the open.

4. Compute the polynomial T (x) = c0 + c1 x + c2 x2 . . . cq xq at
each signature point s j

sender ∈ S sender and obtain a set of or-
dered pairs {s j

sender,T (s j
sender)}.

5. Obfuscate this set of “legitimate” pairs by adding a large
number of “chaff” pairs {ch1, ch2} such that ch1 , T (ch2),
to create a vault.

6. Transfers this vault to the cloud, either directly or through
the base-station.

The medical cloud, upon receiving the vault, performs the follow-
ing steps to retrieve the key:

1. Generate a ∆t long synthetic signal Gi( fi,mi, t) . . .Gi( fi,mi, t+
∆t) with the current time-domain features.
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Figure 2: Physiology-based End-to-End Security.

2. Apply the same transformation as the sender to obtain cur-
rent physiological signature of the mHealth user S receiver =

T (Gi( fi,mi, t . . . t + ∆t)) from the synthesized signal.

3. Computes the intersection of the sets S receiver and the set {S sender⋃
{ch1 . . . chN}, where N is the number of chaff points.

4. if ||S sender
⋂

S receiver || ≥ q + 1, then the receiver has enough
number of {x, y} pairs to derive the polynomial coefficients
c0 . . . cq by using Lagrangian interpolation [18].

5. The cloud then concatenates the coefficients of the regener-
ated polynomial to obtain the key Ks.

5.2 Initializing Generative Models
The most important factor in using generative models for opening
the vault is to parameterize them. For example, generative models
of ECG and PPG require time-domain and morphological features
as suggested in Section 4.2. This can be computed off-line and pro-
vided to the cloud when the model is initialized, or one can send a
sample of physiological signal timer-series to the cloud, which can
then derive the morphological feature values. Either way, when the
user purchases a sensor, we require them to use a sensor to collect
the physiological signal sample long enough to derive the model
inputs and then upload the features to the cloud over a secure web-
connection. It is very easy to have a tool-chain available for the user
to “initialize” a sensor in this manner. Many monitoring technolo-
gies such as runner monitors (http://www.garmin.com), use
such a setup to upload their running data to the cloud very easily.
Contrary to such existing systems, we expect the user to initialize
the generative model only once. As this initialization will be done
in the confines of the user’s home or care facility, we assume that
the initial physiological time series is securely transmitted to the
cloud. After the initial transmission any future E2E key distribu-
tion can be done transparently. To illustrate the initialization pro-
cess, we consider a scenario where a user goes to a doctor’s office
for installing an ECG sensor as shown in Figure 3. We assume that
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Figure 3: PEES initialization process.

the medical practitioner is trusted and has an account in the cloud
server at the time of initialization of an electronic health record of
the user. The initialization process consists of the following steps:

1. The medical practitioner samples the physiological signal of
the user.

2. The practitioner then uses his authenticated cloud server ac-
count to transfer a signal sample to the cloud.

3. The cloud uses this sample signal to automatically learn the
model for the user.

4. A sensor and the cloud then automatically perform PEES to
establish the first secure key.

5. Once this initialization process is done, the security key can
be refreshed by executing PEES as and when needed.

5.3 Changing Model Parameters
PEES needs to store a generative model of the physiological signal
at the cloud. The physiological signal sensed by a sensor may how-
ever drift from the signal generated by the stored model. Therefore
the model parameters for the generative models are not static and
tend to change over time. This may happen due to pathological
conditions such as arrhythmia [11], or after a surgery. Therefore,
for a future re-keying between a sensor and cloud one needs to en-
sure that the model parameters at the cloud are current. This can
be accomplished at run-time for our system. Once the initialization
has been done as described in the previous section, the sensors will
forward their latest measurements using the secure channel thus es-
tablished. The measurements will be continually compared by the
cloud with the synthetic time-series generated by the cloud. If the
actual time-series varies significantly from the generated one, the
model parameters are re-learned. This way the model parameters
are always in synch with the current state of the patient’s physiol-
ogy and re-keying can be done as needed. Finally, once a model
has been loaded onto the cloud, adding or replacing sensor(s) mea-
suring the same physiological signal can be done seamlessly and
does not require any change to the cloud.

6. VALIDATION
The proposed approach is based on the hypothesis that physiolog-
ical signals and their models have enough commonality in order
to achieve secure key agreement. We validate this hypothesis for
two physiological signals the ECG and the PPG and evaluate the
feasibility and strength of PEES. We then move on to analyze the
security of PEES.
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6.1 Feasibility Analysis of PEES
The first step in evaluating PEES is to check if generative models
can produce good enough physiological signals such that features
derived from them can open the vault. All our evaluations were
done using two data-sets: (a) MIT BIH database [11] and (b) IM-
PACT database [12]. In all there were 20 mHealth users in the
study. We have also started testing the proposed E2E security pro-
tocol in a realistic use case with patients in an ICU (Section 8).

In our study with ECG data, we found that the average size of
the intersection between the physiological signatures obtained from
the actual data and the model supplied with current values of time
domain features of the same person, ||S sender

⋂
S receiver ||avg was 8,

with a most likely value of 8. This means that key distribution can
be performed between a sensor and the cloud using PEES with a
7th order polynomial. However, if the model is supplied with the
wrong values of the time domain features fi, then the average size
decreases to 4 and a most likely value of 1. This drastic drop in
intersection size can be obtained by a 5% change in time domain
feature values. For PPG data the intersection size with correct time
domain features was even higher (around 10) with a most likely
value of 8. Figures 4 and 5 shows the ECG or PPG data along with
their respective synthesized signals, the physiological signatures of
the data and the model, and the commonality among the two sig-
natures in sequence. This shows that PEES is feasible and can be
used for E2E security.

6.2 Security Analysis of PEES
As discussed in Section 2, we assume that the attacker does not
have access to any old data or model parameters. The attacker starts
monitoring the network when a sensor is first plugged on to the
body. The attacker can successfully retrieve data in three ways:

1. Get access to encrypted data and brute force the secret key
that was exchanged using PEES.

2. Get access to the model parameters and use the model to
break the vault.

3. Get access to a vault and brute force the entire vault to find
out the physiological signature.

We evaluate each attack with respect to the computational com-
plexity of performing the attack. We will quantify computational
complexity in terms of the computation required to brute force a
secret key. The size of the key, ||key||, is indicative of the maximum
number of combinations, ||key||!, that the attacker has to try before
it gets the correct key. In this regard, brute-forcing the secret key

(which we assume is at least 128 bits long) is intractable for the
attacker. Even if the attacker is able to brute-force the data, a long
enough time would have passed and the attacker will only have a
snippet of old physiological data.

This brings us to the next mode of attack where model parame-
ters are available to the attacker. To evaluate the feasibility of us-
ing stale physiological data for breaking a current vault, we con-
sider performing PEES with physiological data and model gener-
ated data with delayed time domain features. Initially the time de-
lay was kept to 0s so that PEES will be successfully executed in
close to 100 % of the cases. As the delay is increased the number
of cases for which PEES is successfully executed decreased dras-
tically. We found that a 22 second delay in time domain features
can cause the PEES success rate to drop from 100 % to 70 % and a
three minute delay yields a success rate of 3 %. Figure 6 show the
PEES success rates for ECG for different time delays. For PPG the
drop in success rate is much more drastic from 50% for a 22 second
delay to 0.1% for a 3 minute delay.

Finally, the strength of security comes from the difficulty in break-
ing the vault. The attacker can brute force the vault to get at least
q + 1 common points in the physiological signature. In this at-
tack the attacker gets access to a vault and takes q + 1 elements
from it and performs Lagrangian interpolation to obtain the key. In
the worst case the attacker has to perform

(N+||S sender ||
q+1

)
Lagrangian

interpolation computations, where N is the number of chaff points.
Thus, the computational complexity increases combinatorially with
the increase in the number of chaff points and the polynomial order.

For a fixed polynomial order there can be false negatives, i.e., mod-
els with wrong parameters can have enough common points in the
physiological signature leading to a security breach, or false pos-
itives, i.e., models with correct parameters may not have enough
common points leading to a denied access. Figures 7 and 8 show
the false positive and negative rates for different polynomial orders.
We see that as the polynomial order increases the false negatives
decrease but the false positives increase. Ideally we would want
to minimize both the false positives and negatives and from both
the figures we see that there is a “saddle" point where both gets
minimized. However, if we put forth the security of the system as
our prime objective rather than accessibility, we can sustain a high
false positive rate for a low false negative rate (≈ 0.05). We see
that for both ECG and PPG a polynomial order of 9 has very low
false positive rates. We also observed that on an average the size of
S sender is ≈ 30 for both PPG and ECG. If we consider 4000 chaff

points in the vault then in the worst case the attacker has to perform(4030
9

)
combinations which is equivalent to brute forcing a 90 bit
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Figure 6: Decrease in number of common
peaks with increase in time delay.
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Figure 7: False negatives and positives for
PPG signals.
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Figure 8: False negatives and positives for
ECG signals.

private key. However, since with increasing polynomial order the
false positives increase, the cloud has to perform the PEES com-
putation more number of times to retrieve the key. However, this
number is of the order of 10 computations as opposed to 290 for
the attacker. Given the massive computation capability of the cloud
such computations may be considered light-weight. Note that the
false positive here simply means the receiver (cloud) has to try more
combination of points in the vault, and not a complete shut-down
of the protocol itself.

7. RELATED WORK
Typically in mHealth systems researchers focus on securing every
communication link separately [14, 17]. Solutions require main-
taining dedicated public and private keys for sensor-to-sensor, sensor-
to-smartphone, and smartphone-to-cloud [14]. This introduces sig-
nificant overhead in the deployment of the mHealth system and
also blocks storage in already resource constrained sensors. Sev-
eral solutions have also proposed introducing additional hardware
in the mHealth system solely dedicated to achieve security among
different entities [16]. Although such an approach can provide
security as well as interoperability in a heterogeneous sensor set-
ting, the requirement for an additional device is invasive. To en-
able non-invasive plug-n-play security, no PKI key storage and no
pre-deployment overhead, researchers have proposed physiological
signal based key agreement [4, 13, 18, 19]. However, such an ap-
proach is only limited to securing inter-sensor communication and
cannot provide E2E security. PEES overcomes the limitations of
these approaches by providing transparent E2E secure communi-
cation channel between a sensor and the cloud. It can also be used
to secure individual communication links in a mHealth setting.

8. DISCUSSIONS
In this paper, we have shown that models and physiological data
can collaborate to provide plug-n-play E2E security. However, in

our approach we have considered that the attacker cannot get access
to time domain features. Such assumptions are not often true and
there are several non-invasive ways such as electromagnetic cou-
pling to obtain traces of current time domain signals without phys-
ically placing a sensor. Further, using the MIT BIH and IMPACT
data base we only showed the feasibility of PEES. A thorough clin-
ical study is required to show the effective operation of PEES in
practice. We discuss these two issues in this section.

The heart has a strong electromagnetic field which gets coupled to
electrical measurements done in close proximity to a human body.
For example, ECG artifacts are often observed in electroencephalo-
gram (EEG) measurements [9]. In our previous work [3], we have
demonstrated in very limited cases that an attacker can deduce time
domain properties of ECG from its own EEG measurements. If the
attacker has a generative model, it can then break PEES. However,
to be successful the attacker must have access to a generative model
and have physical contact with the mHealth user, which can be
avoided.

AgCl Electrodes for Standard 
Monitor 

Double Electrodes for ECG 

Smart phone connected 
to Shimmer device 
through Bluetooth 
running model based ECG 
synthesis 

Holter 
Monitor 

Figure 9: Clinical study setup.

To show practical appli-
cability of PEES, clinical
studies in an actual hospi-
tal environment are neces-
sary. We have partnered
with St. Luke’s Hospi-
tal in Phoenix, Arizona,
to simultaneously deploy
medical grade ECG mon-
itors (Holter monitors), to
sense sample by sample
ECG, and Shimmer sen-
sors, which sense time do-
main features and synthe-
size ECG data, on 25 patients for 20 hours each (setup shown in



Figure 9). The configuration shown in Figure 9 is similar to the
configuration 2 shown in Figure 1. We have prepared consent doc-
uments in both English and Spanish and have also secured Institu-
tional Review Board (IRB) approvals. The data is kept in a secured
repository and is only available to the authors and the participat-
ing physicians of St. Luke’s hospital. After analyzing the data we
plan to make the data public in our IMPACT Lab webpage. We
were able to successfully execute PEES on a single patient, and
the attacks discussed in Section 6.2 were not successful. We are
still investigating other patients and the results will be published in
future.

9. CONCLUSIONS
In this paper, we proposed Physiology-based End-to-End Security
(PEES), a novel protocol that establishes a secure communication
channel between a sensor and the medical cloud in a transparent
manner. Once the key exchange has happened in this manner, a sen-
sor and cloud can perform secure communication with each other.
The idea behind PEES is for the sensors to use physiological signal
based features to hide the keying material using a cryptographic
primitive called the vault. This information is then transferred to
the cloud, which then uses a clinically relevant physiological model
to unhide the keying material, or open the vault. Although we show
the validity of our hypothesis for two signals, we believe that if we
have a generative model for a physiological signal then the pro-
posed E2E protocol is generic enough to provide communication
security using that signal. PEES’ key distribution meets our design
goals (Section 1): (1) the keys are long and random, (2) the vault
with large enough polynomials and chaff-points is quite secure to
prevent information leakage about the key being exchanged, (3)
the entire process permits re-keying at anytime, and (4) all this can
be done with minimal user involvement. Although the proposed
scheme for plug-n-play security bypasses the smartphone, in many
cases, however, the smart phone is an important entity for real time
applications such as physiological data visualization, or diagnosis.
The proposed E2E protocol, can be easily extended to include the
smartphone without any extra storage or pre-deployment overhead
for the sensors, provided the smartphone is kept secure from phys-
ical compromise. We have also started clinical studies to establish
its efficient execution in practice.
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