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The article presents an access control model called Criticality Aware Access Control (CAAC) for
criticality (emergency) management in smart infrastructures. Criticalities are consequences of
events which take a system (in our case, a smart infrastructure) into an unstable state. They
require the execution of specific response actions in order to bring them under control. The
principal aim of CAAC is to grant the right set of access privileges (to facilitate response action
execution), at the right time, to the right set of subjects, for the right duration, in order to control
the criticalities within the system. In this regard, the CAAC model uses a stochastic model called
the Action Generation Model to determine the required response actions for the combination of
criticalities present within the system. It then facilitates response actions by adaptively altering
the privileges to specific subjects, in a proactive manner, without the need for any explicit access
requests. In this article, we formalize the CAAC model and validate it based on two design goals
- proactivity and adaptiveness. Finally, we present a case study demonstrating CAAC’s operation
on an oil-rig platform in order to aid in the response to health and fire related criticalities.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Access Control; K.6.5 [Man-
agement of Computing and Information Systems]: Security and Protection
General Terms: Security, Access Control, Proactivity, Adaptivity

Additional Key Words and Phrases: Criticality Aware Access Control, Criticality, Window-of-
Opportunity, Pervasive Computing, Smart Infrastructure, Cyber-Physical Systems

1. INTRODUCTION

Recent years have seen the development of smart infrastructures which consist of
a large number of heterogeneous, massively distributed computing entities. Such
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cyber-physical systems [Gupta 2008] provide their users with an aware, intelli-
gent, information rich environment for conducting their day-to-day activities. An
important application of their monitoring capabilities is emergency management
[Adelstein et al. 2005] [Venkatasubramanian et al. 2005]. Examples of emergencies
include patient needing urgent medical attention, crisis such as building fire, and
the computing infrastructure under attack from outside. Smart infrastructures can
detect such emergencies and facilitate response by providing real-time information
to the planners and relief workers, thereby improving the chances of saving lives
and property.

Traditional wisdom dictates that in the event of emergencies, any security sys-
tem in place should be disabled in order to allow relief workers to fully utilize
the capabilities of the system for controlling the emergency [Mehrotra et al. 2004;
Denning et al. 2008]. However, given the extent of sensitive information available
within smart infrastructures, disabling security in the event of emergencies may
potentially leave the system vulnerable to exploitation. Similarly, it is also possible
that malicious elements may dupe the smart infrastructure into detecting a false
emergency, disable the security system and collect sensitive information. We there-
fore contend that while utilizing smart infrastructures for emergency management
care has to be taken that the privacy of the users is protected. We define privacy
preservation during emergency management as the temporary provisioning of the
necessary information and services for responding to the emergency, to specific sub-
jects, until the emergency is contained. In the following section we present some of
the principal concepts regarding emergencies and their management.

1.1 Emergencies or Criticalities: Concepts

Emergencies, also referred to as criticalities in this article, can be defined as adverse
consequence of specific events called critical events on a system. Critical events are
those whose occurrence moves a system into an abnormal/unstable state. Criticali-
ties usually require timely response actions to be controlled, i.e., their adverse effects
negated. A criticality, which has not yet been controlled, is called an active critical-
ity. In practical terms, controlling a criticality means minimizing the possibility of
loss of lives, services, and property in the event of a criticality. Each criticality has a
time duration associated with it, known as the window-of-opportunity (W,), within
which response actions have to be taken for controlling the criticality. A criticality
is effectively controlled only if all the response actions for it are executed within its
W,. A criticality whose W, has passed is said to be expired. Criticality management
is defined as a process by which the criticalities can be controlled. As illustrated
in Figure 1, criticality management has four phases: 1) Detection - is responsible
for detecting criticalities in a timely manner; 2) Response - facilitates the actions
that need to be taken to bring criticalities under control; 3) Mitigation - deals
with long term recovery efforts; and 4) Preparedness - analyzes the criticalities
of the past and get ready for the future ones. It is executed when the criticality
has been controlled, or before the system is deployed in order to determine and
improve the effectiveness of the requisite steps in the other three phases.
Criticalities usually occur in groups. For example, a building catching fire is
a criticality and the presence of trapped people within this burning building is
an additional criticality, both of which need to be controlled (i.e., building saved
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and people rescued). Handling multiple criticalities is considerably complex for
various reasons: 1) the system has to not only keep track of the occurrence of new
criticalities but also the expiration of existing criticalities (i.e., when either the
criticality is successfully responded to or the W, is expired); 2) the occurrence of
criticalities, and the response actions required to control them have a stochastic
nature due to the probability of human error in executing them [Mukherjee et al.
2006] (it is therefore possible that responding to a criticality might lead to other
criticalities within the system and the determination of response actions at any
time have to take these into account); and 3) with multiple criticalities, we have to
prioritize the control of one criticality over the others, such that, the probability
that all the criticalities have been controlled is maximized. Therefore, depending
upon the combination of criticalities present in the system, the response actions
required to control them may vary. For example, if a person is facing an angina,
the principal response action to perform is to give them the required medication. If
however the person facing the angina is in a room engulfed in fire, the fire control
might have to be prioritized in the larger interests.

1.2 Access Control for Criticalities

One of the ways of securing sensitive information in smart infrastructures is by
using access control models [Sampemane et al. 2002]. Access control models are
typically used to authorize access to specific information and services for subjects in
the system during day-to-day activities. We contend that for smart infrastructures
the access control models can be easily applied for privacy-preserved emergency
management, by using them to facilitate response actions.

In this article, we present Criticality Aware Access Control (CAACQC).
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CAAC is an adaptive and proactive access control model designed to facilitate
the control of multiple criticalities in smart infrastructures, while ensuring pri-
vacy preservation. Its principal aim is to provide the right set of privileges, to the
right set of subjects, at the right time, for the right duration, to facilitate the control
of all the active criticalities within the system. As its purpose suggests, CAAC is
usually implemented in the response stage of the criticality management. We have
identified two basic characteristics that CAAC needs to posses: 1) Adaptiveness:
the ability to: i) determine the response actions required for handling the current
set of criticalities within the smart infrastructure, and ii) change the privileges
available to the subjects in order to maximize the chances of controlling all the
criticalities within their W,; and 2) Proactivity: the ability to determine the sub-
jects for executing the response actions, and enable them to execute the required
set of response actions (even those which are not allowed during normal operations)
in an accountable manner, thus avoiding the need for any explicit access requests.
Note that, once the criticalities present within the system have been brought under
control, all privileges provided thus far are rescinded, as they are no longer needed.
The same holds in the case where the W, of one or more criticalities has expired.

It should be noted that there is a fundamental difference between criticality-
awareness of CAAC and context-awareness that many traditional authorization
models possess. Context-awareness takes into account the contextual information
of the subject making the request while making its access decision. On the other
hand, with criticality-awareness, the contextual information considered is for the
whole system and all its components (not the subject making the request alone).
This system context is evaluated continuously and in case of a deviation from the
norm, appropriate privileges are provided for subjects to deal with it, even without
an explicit request from the subject.

The contributions of the article are as follows: 1) formalization of the CAAC
approach and its policies, 2) validation of CAAC’s principal design goals of proac-
tivity and adaptiveness, and 3) a detailed case study that illustrates the operation
of CAAC on an oil-rig with medical and fire criticalities. In the rest of the article,
the terms system and smart infrastructure are used interchangeably.

The article is organized as follows. Section 2 presents the CAAC and its char-
acteristics, policy specifications and its implementation. Section 3 presents the
validation of CAAC based on the design goals we identified. Section 4 presents
a detailed case study to demonstrate CAAC’s execution. Section 5 presents the
related work followed by Section 6, which concludes the article.

2. CRITICALITY AWARE ACCESS CONTROL (CAACQ)

This section presents CAAC model designed to facilitate response actions to criti-
calities within the system. We begin with the system model, and then move on to
the design goals, the model primitives, and the response action facilitation scheme.

2.1 System Model

In this section we present some of our principal assumptions with respect to the
operation of Criticality Aware Access Control. CAAC is assumed to be deployed
in a smart infrastructure. It views the constituent entities of the infrastructure as
belonging to one of the two groups - 1) Objects: which are both physical and virtual
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entities which provide a variety of information and services, and 2) Subjects: which
are inhabitants of the environment who access information and services provided
by the objects. CAAC manages the access to the objects by the subjects within the
environment. CAAC itself is deployed and managed by a trusted administrator.

All access control systems need an underlying authentication system to function.
For this work, we assume that the smart-infrastructure has an authentication sys-
tem which can reliably identify subjects, as in [Bhargav-Spantzel et al. 2006]. Note
that the technology used by the authentication system is not the focus of this work;
we simply assume that it has the ability to authenticate subjects reliably and pro-
vide this information to the access control system in place. Finally, we assume that
all criticalities are detected reliably, i.e., their types and properties are accurately
known at the time of detection using techniques such as [Liu et al. 2004].

2.2 Design Goals

As mentioned in Section 1.2, principal characteristics that access control models
for privacy preserving criticality management need to possess are adaptiveness and
proactivity. To ensure this, we consider them as design goals CAAC needs to meet.
In this regard, we present five criteria, which characterize the two design goals. They
are: 1) Correctness: which ensures that the response actions are facilitated through
access privileges only as a consequence to the occurrence of critical events within the
system; 2) Liveness: which requires that any access privilege provided in response to
critical events is only for a finite amount of time; 3) Responsiveness: which ensures
that occurrence of criticality facilitates response actions, which requires provision
of access privileges to the right set of subjects, and subject notification; 4) Non-
repudiability: which mandates that all response actions taken within the system
during criticality are recorded for accountability purposes; and 5) Safety: which
ensures that only authorized change to resources and access control constructs can
happen within the system.

We contend that the first three criteria are necessary for demonstrating CAAC’s
adaptiveness, while the last three demonstrate its proactivity. Intuitively, if CAAC
is adaptive, it has to determine the privileges needed for managing a criticality
(responsiveness), change the access privileges to subjects based on the changes in
the critical states within the system (correctness), in a temporary manner (liveness).
Similarly, if CAAC is proactive, it has to be able to legitimately authorize subjects
with appropriate privileges in order to enable them to take response actions (safety),
without any explicit access request (responsiveness), in an accountable manner
(non-repudiation).

2.3 CAAC: Primitives

CAAC is implemented in the response stage of criticality management. It speci-
fies the privileges that subjects get on various objects in the system under both
normal situations and criticalities. In normal situations, the default privileges are
provided, while during criticalities, alternate ones are issued. These privileges may
allow subjects with alternate (greater or lesser than before) capabilities than they
normally would have. The CAAC model uses the basic constructs of Role Based
Access Control (RBAC) [Sandhu et al. 1996] for controlling access for subjects (S)
to objects (O) in the system. We use RBAC as we want to demonstrate how crit-

ACM Journal Name, Vol. V, No. N, Month 20YY.



6 . K. K. Venkatasubramanian, Tridib Mukherjee and Sandeep K. S. Gupta

@ Normal State

Critical State /
________ > cL

I RL

Notes:

* Both CLand RL are associated
with probabilities.

* Probability of CL denotes the
chances of a particular
criticality occurring within a
state

¢ Probability of RL denotes the
chances of successfully
executing the associated
response actions

¢ The sum of the probability of all
outgoing CLs and RLs at a critical
stateis 1

Fig. 2. Example Action Generation Model, which illustrates the hierarchy of normal
and critical states of a system

icality awareness can be incorporated in an existing, widely used access control
model. Subjects in the system have a role associated with them. Roles (R) are rep-
resentation of subjects’ responsibilities, and is assigned to them when they become
part of the system. Examples include a doctor joining a hospital being assigned the
roles of a surgeon and doctor of patient X. Even though a subject can have many
roles, they can be activated only one at a time. The CAAC model keeps track
of the current role the subject has taken and provides mechanisms for switching
between the roles. To determine the actions that subjects can perform on specific
objects, their roles are indexed into an Access Control List (ACL) maintained by
objects in the system. ACLs are tables defined for each object in the system which
maps roles to associated privileges. Privileges (PR) are authorizations which al-
low subjects to execute specific actions on specific objects within the system. For
example, privilege for reading a file, using an equipment, or deleting a record.

Initially, when CAAC is being setup the administrator of the system establishes
the set roles, privileges and their default mappings (ACL). Under normal situations,
CAAC behaves similar to a context aware access control model akin to schemes such
as [Hu and Weaver 2003]. When the system experiences criticalities (C), the access
control model becomes more proactive. It evaluates the criticalities in the system,
identifies the response actions that need to be taken, and proactively enables them.
The chosen subjects can now access the system with alternate set of privileges than
normally available to them for criticality management.

2.4 Criticality Response Facilitation in CAAC

In this section, we present how CAAC facilitates the response actions in a smart
infrastructure. It has two phases: i) preparation, which involves identifying the re-
sponse actions; and ii) ezecution, which involves identifying the subjects to manage
the active criticalities and temporarily providing them with the required privileges
to execute the actions.
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2.4.1  Preparation. This phase of CAAC relates to the preparedness phase of
the criticality management process. The set of actions for all possible combina-
tions of criticalities that can occur within the system are determined in this phase.
For example, emergency procedure manuals are developed for managing common
emergencies such as fires and earthquakes in buildings. The current techniques for
determining the response actions during criticalities are qualitative in nature. Hav-
ing quantitative models can allow them to be evaluated in a computer and their
results available electronically in a format understood by CAAC.

Action Generation Model: We have developed a novel and effective way of de-
termining the response actions for criticalities within the system called the Action
Generation Model (AGM). This model is based on the criticality modeling frame-
work defined in [Mukherjee et al. 2006]. It consists of two types of states: normal
and critical. When a criticality occurs, the system transitions from the normal
state to a critical one. The system’s state changes as new criticalities occur or get
controlled. The system reaches the normal state only when all active criticalities in
the system are controlled. The transitions which take the system toward the normal
state are called Response Links (RL) and those that increase the number of active
criticalities in the system are called Critical Links (CL). Each CL and RL has a
probability associated with it. Figure 2 shows an example AGM. The dashed lines
are the CLs while the solid lines are the RLs. The sum of the probabilities of all the
CLs and RLs originating from a given state is 1. The CL specifies the probability
of a particular criticality occurring given the current state of the system. Similarly,
RLs represent the execution of the associated response action, taking the system
from a lower state toward the normal state, and the probability of successfully ex-
ecuting them (based on human error probabilities). Each RL and CL also has a
time parameter associated with it, which determines the required time for taking
the link. For CL this signifies the time to detect the occurrence of the criticality
and for RL it is the time to take the response actions. From a given critical state,
the system may have multiple RLs (each representing a different response action)
which can potentially take it to the normal state.

The choice of a particular RL depends upon its P*-value, which is a combi-
nation of three factors: 1) the probability of successfully reaching the neighbor-
ing state from the current state, by taking a RL; 2) the probabilities of success-
fully reaching the normal state from the neighboring state, which is compiled as
an aggregated value by considering all possible paths to the normal state from
it; and 3) conformance to the window-of-opportunity of all the active criticali-
ties in the system. For a RL to be chosen, it is desirable to have the maximum
P*-value, since this represents the best response actions, given the current state
the system is in. For example, if the system is in State 4 in Figure 2, then
chosen RL is given by max({p(4,2) * P(2,N)}, {p(4,3) x P(3,N)}) provided the
W, is met for all the criticalities active in State 4. Here p(i,j) is the probabil-
ity of reaching State j from State ¢, and P(k, N) is the aggregate probability of
reaching normal state from State i through all possible paths to N, for example
P(2,N) = p(2,N) + p(2,1) x p(1,N) + p(2,1) * p(1,3) * p(3, N)'. The aforemen-

IWe assume that during a criticality response, the critical states from which we have moved up
the hierarchy will not be reached again
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tioned computation of P*-value of each RL and choosing the one with the maximum
value, called the optimal planning criterion. However, using P*-value as the basis
of identifying the next RL suffers from two problems: 1) the state space explosion
in computing the P*-value, and 2) the computation of P*-value returns zero, if the
W, of any of the active criticalities expire, in which case, no RL is returned from
the current state. To overcome this problem, we use two heuristic planning criteria,
which are greedy in nature: 1) choosing the RL with Mazimum Probability (MP) at
the current state, and 2) choosing the RL at the current state whose actions take
the Minimum Time (MT).

The AGM is executed in an off-line manner during the preparedness phase of
the criticality management process. Using tools like AGM have an important ad-
vantage. They allow the identification and planning for situations where a given
combination of criticalities cannot be controlled. Such situations can then be im-
proved by designing better response actions, faster criticality detection mechanisms
in order to maximize the probability of reaching the normal state from a critical
state. If for some reason, it is not possible, we can use a mixture of optimal and
heuristic planning criteria for different states of the AGM to try to improve the
overall goal, minimizing the number of criticalities within the system.

Response Action Generation for CAAC: In order to automate the AGM execution
process, a tool called Criticality Response Fvaluation Tool (CRET) is used. The
tool takes as input (in XML form) the set of states, the CLs, the RLs, and applies
optimal or greedy strategies for determining the RLs of choice at different critical
states [Mukherjee and Gupta 2009]. However, it lacks one capability, in that it
does not allow the specification of tasks, i.e. sub-actions that constitute response
action). As there may be multiple ways of responding to a criticality, the question
now arises as to which one to choose as the task associated with a RL.

The process of choosing the response action to be associated with a RL has
to be first and foremost risk-averse, taking into account the following factors: 1)
probability of success, 2) knowledge of the number and capability of subjects who
may execute the actions, and 3) the availability of resources to pursue the action.
The relative priority associated with these factors is again system dependent. For
example, if the criticality is a ventricular fibrillation on a subject with implanted
pacemaker the possible task associated with responding to it could be: 1) command
the pacemaker to shock, and 2) use external defibrillator. If we assume that both
the actions require one subject and the necessary tools are available, and (1) has
90% success rate compared to (2) whose success rate is 10%, we associate the action
‘command the pacemaker to shock” with RL whose probability is now 0.90.

We extend the CRET tool to allow the specification of response action with RLs.
This is done in the form of a tuple with two elements <ObjectI D, Privileges>, the
object on which the action is to be executed and the privileges required on them.
In our previous example, object in question is the defibrillator and the privilege is
use. As the object-privilege tuple enables only a specific action, it can be chosen
such that it follows the principal of least-privilege in facilitating the response action.

In general, each RL is associated with a task set T'S = {a1,as,...ax}, where k
is the number of response sub-actions. The privilege associated with a RL will be
provided to the chosen subjects (see the next section) even if they conflict with the
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subjects’ default privileges, since criticality response is of paramount importance
for the long-term stability of the system.

2.4.2 Ezxecution. Given the identified criticality response actions in the prepa-
ration phase, the execution phase identifies the subjects and provides them the
proper access privileges to perform the actions.

Subject Selection: We posit that subject selection in CAAC is primarily a function
of criticality, as it is usually the nature of the problem which determines the number
and type of people required to address it. Given the knowledge of the types of
criticalities within the system during the preparation phase, subject selection for
taking response actions can be primarily done in two ways: 1) statically, i.e., the set
of subjects required for controlling it can be pre-determined and stored in a static
list depending upon the criticality; and 2) dynamically, i.e., determining the set of
subjects depending on the system context. For example, if the possible criticality
is a fire, then the subjects required for controlling it are fire-fighters in the nearest
fire station. As such, these fire-fighters can be statically selected. However, this
approach does not work in situations where it is not possible to know the identity
of the type of subjects to be chosen, beforehand. For example, in the event of a
fire on floor X of a building, all the subjects on the floor need to be evacuated, and
should therefore be given the required privileges to allow them to escape. To handle
such situations, rules could be defined which specify contextual criteria (location
= Floor X) for the subjects in order to be selected.

Enabling Response Actions: Once the action that needs to be taken at the current
system state has been identified, and the subjects to execute the actions have been
chosen, the actions need to be enabled, the subjects notified and then rescinded
at a later time. This is done in three steps: 1) provisioning alternate privileges
to the chosen subjects; 2) informing selected subjects of the new privileges; and 3)
rescinding alternate privileges after the responses are performed or the windows-
of-opportunity are expired. The alternate privileges are provided by assigning the
selected subjects with a new temporary role (CAAC-Role) and adding a new entry
to appropriate object’s ACL. Since the underlying roles of the selected subjects
have been modified, they cannot perform any of their tasks they can perform in
normal situations, unless it is part of the response actions. Once the appropriate
changes to subjects’ role and objects’ ACL have been made, CAAC informs the
subjects of their new roles, the criticalities at hand and the response actions to
perform. The system then maintains detailed records of the alternate privileges
provided to subjects and the actions that were taken with these privileges.

The system is further designed to periodically check its state to determine the
current set of response actions (based on the preparation phase). The privileges
provided in the previous states are rescinded once they are no longer required to
perform the response actions in a new state. Thus, any conflict between any privi-
leges provided in the past and those provided for responding to current criticalities
within the system is avoided. Such rescinding of privileges also takes place if the
system has reached the normal state (no criticality) or that criticality is beyond
control, in which case the system has to be audited based on its logs.
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SETS:
* Role (R) - responsibility of subject in system; R =
set of {role}

* Privileges (PR) - authorizations associated with
entities in system; PR = set of {auth}, where auth
=<nw, x>

* Access Control List (ACL) - a table associating
role with privileges; ACL = set of {<r, p>}, where r
€Randp € PR

* Subject (S) - entities within the system
responsible for utilizing services provided by it; S
= set of {<Sid, X>}, where Sid = unique string and
VgeX geR

* Object (O) — entities within the system

TABLES:

* Subject-Role-Table (SRT) — maintains current role
active for every subject within the system; SRT =
set of {<s, r>}, where (s,*) €S,r eRAr es.X

« Static-Subject (SS) — is a static list of subjects
who need to be selected in the event of a
particular criticality ; SS = set of {<c, X>}, where ¢
eCAXcCS

* Dynamic-Subject (DS) — is a list of context criteria
based on which subjects are selected in the event
of a particular criticality; DS = set of {<c, t>},
where ¢ € C, and t is context criteria

« Old Role (OL) - stores original role of subject
when system handling criticalities ; OL = set of
{<s, r>}, where (s,*) €S,r eRAr es.X

responsible for providing services provided by it;
O = set of {< Oid, ACL> }, where Oid = unique
string

« Criticality (C) - criticalities that can occur within
the system are defined using the tuple; C = set of
{<Cid, Wo>}, where Cid = unique string and Wo is
window-of-opportunity

Fig. 3. Principal Components of CAAC Policy Specifications.

3. CAAC POLICY SPECIFICATION AND IMPLEMENTATION

Given the phases of CAAC in the previous section, this section presents the CAAC
policy specification? and implementation (Figure 4) to facilitate the criticality re-
sponse actions in the execution phase. Figure 3 shows the principal components
used for the CAAC policy specification such as the notion of roles, subjects, ob-
jects, privileges, and access control lists as originally described in Section 2.3. The
Subject-Role-Table (SRT) maps the subjects to specific roles. The Static-Subject
(S9S) and the Dynamic-Subject (DS) tables store statically and dynamically se-
lected subjects (Section 2.4.2), respectively, to perform the response actions. The
Old-Role (OL) table stores the original roles of the subjects who were given alter-
nate roles during criticalities to perform the response actions. Given the principal
components, the following subsections present the access control policies in CAAC.

3.1 Administrative Control Policies

These are the policies which are used to perform the basic functions of the CAAC
model such as adding and removing subjects, associating and dissociating subjects
with roles, updating ACLs and so on. Each of the policies can be executed only by
the administrator of the smart infrastructure. We assume the presence of a system-
dependent function Auth() to authenticate subjects with administrative privileges
(Admin). The symbols s, p, r, and o are used to index the subjects, privileges,

2The policies are described in the guarded command language form where a sequence of guards
are followed by sequence of actions [Sampemane et al. 2002], represented as: guard — command.
A policy rule is read as: if guard is true then execute command. The guard is usually a predicates
which must hold before the command is executed. The guard may represent the contextual pa-
rameters such as occurrence of events or presence of specific conditions - time, user characteristics
(location, designation). The command on the other hand usually specifies the action that need to
be taken if the contextual cues in the guard are satisfied.
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roles, and objects, respectively.

(1) Add Subject: Adds a subject (s) to the system (AddSubject predicate is used
for this purpose), along with the set of roles that the subject can take:
AddSubject(s,roles, Sadmin) N Auth(Sadmin, Admin) A Vr € roles, r € R —
S =85 U{s,roles}.

Removing subjects (RemoveSubject) is a simple extension of this policy where
the action S = S U {s,roles} is replaced by S = S — {s, roles}.

(2) Activate Role: Activates the role of a subject (ActRole predicate is used for
this purpose) by storing it in a specific subject-role (SRT) table:

ActRole(s, Saamin, ") N (8,%) € S A Auth(Sadmin, Admin) A SubjectOwns(s,r)
— SRT := SRT U {s,r}.

Here the predicate SubjectOwns(s,r) checks if r is one of the roles that s can
activate. To deactivate the roles (DeActRole), the action SRT := SRTU{s, r}
is replaced by SRT := SRT — {s,r}:

(3) Add ACL: Adds a new ACL entry to an object (AddACL predicate is used).
AddACL(r,p, 0, Sadmin) N Auth(Sadmin, Admin) A (0,%) € O ANp € PR Aif P
{r,p} € 0. ACL — 0.ACL := 0.ACL U {r, p}.

To remove ACL (Remove ACL), the action 0.ACL := 0. ACLU{r, p} is replaced
by 0.ACL := 0. ACL — {r,p}.

3.2 Access Control Policy

This access control policy (ACP) is used to evaluate the access request of specific
subjects and provide the requested privileges if the request holds true:
ACP(s,0,p) A (s,%) € SA(0,%x) € OAp € PR A {currentRole(s),p} € 0. ACL A
(if(mode # critical)then(sContext(s) == oContext(0)) else true) — allowAcc().
Here the functions sContext(s) and oContext(o) return the current context of the
subject s and the context expected by the object o, respectively. The contexts
of subjects and objects are evaluated only under normal situations and not in
critical mode. Further, currentRole(s) returns the present role of the subject s,
and allowAcc() is a Boolean function allowing the requested access.

3.3 Criticality Control Policies

These policies are used for enabling the CAAC model to control the criticalities
that exist within the system. There are three main policies which accomplish this

task, which we describe below:
(1) Alternate Privileges: This policy (predicate AltPriv) provides the alternate

privileges required to enable criticality management. It utilizes the task set
TS generated by the getT'S() function for the current state the system is in,
as described in the Section 2. Each a € T'S is an action of the form < o,p >,
where 0 € O and p € PR. It also needs a list of chosen subjects Sub who will
be granted the alternate privileges. The original privileges of the subjects are
stored in the table OL, which will be used to reset the subject’s role:
AltPriv(Sub,TS) A Vs € Sub, (s,*) € S AVa € TS, (a.0,%x) € O, a.p € PR
— Va € TS, AddACL(CAAC-role,a.p,a.o, Sadmin), Vs € Sub, OL := OL U
(s, currentRole(s)), ActRole(s, Sadmin, CAAC-role).

(2) Inform Subjects: It is used to inform the chosen subjects (Sub) they have al-
ternate privileges (predicate InformSub). A system specific function Inform
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CAAC_EXEC()
1. stateChange :=false 18. fore.ach (e €55) .
2. selSubject = § 19. if (e.c== cur_rentCrlt) )
3. Mode := Normal 20. .seISubject := selSubject U {e.X}
4. while(true) 21. endif
5. t := checkSystem State() 22.  endforeach
6. if(t # currentState) 23. fore.ach (d € Ds) )
7 currentState := t 24. if (d.c == currentCrit)
8. currentCrit = findCrit(t) 25. foread.1 (ses)
9. RescPriv() 26. if (uContejxt(s) ==d.t) )
10. if(t = Normal) 27. se.ISubJect := selSubject U {s}
11. mode := CAAC 28. endif
12. else 29. . endforeach
13. mode := Normal 30. endif
14. endif 31. fendfore'ach )
15, endif 32, if (AltPI’IV(Se|$Ub]eCtS,TS'))
16. if (mode == CAAC) 33. InformSub'(seISubjects,TS)
17. TS = getTS(currentState) 34. RecordActions()

35.  endif

36. endif

37. Waitt,

38. endwhile

Fig. 4. CAAC Execution Model.

is used to perform the required action for this purpose:

InformSub(Sub,T'S) AVs € Sub, (s,*) € SAVa € TS, (a.0,%x) € O,a.p € PR
— VYa € TS, Inform(Sub, a.p, a.0, Sadmin)-

Rescind Privileges: This policy (predicate RescPriv) rescinds the alternate
privileges, provided earlier, in the event of a change in the number of criticalities
or elimination of all criticalities from the system:

RescPriv() — Ve € OL, ActRole(e.s, Sadmin, €-T)-

3.4

The overall execution model of CAAC is described in Figure 4, which gives the
pseudo-code for the entire process. The model runs in an infinite loop monitoring
the system for change in the system state. The system dependent checkSystemState()
function is used for this purpose. If a change is detected, we check if the system is
now moved away from its normal state. If so, the system is moved to the CAAC
mode. In the CAAC mode, given the current state of the system, the function
getTS() returns the T'S by simply mapping the state to the result of CRET execu-
tion. Once T'S is known, the set of subjects necessary to carry out the actions are
selected based on the SS and DS tables. Each of the selected subject is provided
with the privileges to execute the actions in T'S using the AltPriv policy, and then
informed using the InformSub policy. All actions taken when the system is in
the critical state is recorded using the RecordActions() function. The function is
system dependent and we therefore refrain from defining it here. The recording is
required to ensure accountability to the CAAC model to ensure that any malicious
activity performed using the alternate privileges for criticality control are detected.
Once the privileges have been provided, the system waits for ¢, duration of time,
and repeats the whole process all over again. If the system moves from one critical
state to another, then any alternate privileges are rescinded using the RescPriv()
function.

CAAC is designed to be proactive and adaptive in nature and is expected to

Implementation
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Table I. Criticalities and Properties.

1D Criticality Wo Task-Set (TS) Exec. Time
. {< Defib, < —, —, True >>, .

ct Heart Attack 5 min < Health Data, < True, True, — >>} 1 min

c2 Fire 20 min  {< Fire Ezit,< —, —,True >>} 2 min

c3  Unstable Angina 60 min  {< Health Data,< True, True, — >> } 1 min

c4 Fire Assistance 12 min  {< Control Room Door,< —,—,True >>} 2 min

“—" means the corresponding privilege is not applicable to the object in TS (e.g., read and write
privileges are not applicable for defibrillator, Defib).

provide right access control privileges to right set of subjects at the right time for
the right duration, in order to control active criticalities within the system. In
Section 2 we defined a set of criteria which demonstrate CAAC’s adherence to its
design goals of proactivity and adaptiveness. In the following section, we present
semi-formal proofs to illustrate the CAAC policy specification’s adherence to the
design goals.

4. VALIDATION

We assume for the proofs the access policies are implemented and enforced correctly.

THEOREM 4.1. Responsiveness: When a critical event occurs - 1) the subject
is immediately notified, and 2) its access privileges are changed.

PROOF. The proofs of the claims above are as follows: 1) When there is a crit-
icality, the subjects are notified in Line 33 of Figure 4. 2) The role of the subject
being notified is updated in Line 32 of Figure 4 using the policy AltPriv. [

THEOREM 4.2. Correctness: Subjects get alternate set of privileges if and only
if there is at least one un-controlled criticality in the system.

PRrROOF. If there is at least one un-controlled criticality in the system, the mode
variable is set to CAAC in lines 10 - 15 of Figure 4. This results in the execution of
Lines 16-34 of Figure 4, thus providing alternate set of privileges to subjects. If a
subject is allowed to execute actions which are enabled by alternate privileges (line
32 of Figure 4), the mode has to be set to CAAC. As this can happen only if the
currentState of the system is in critical state, the result follows. [

THEOREM 4.3. Liveness: The mazimum duration for which subjects are as-
signed alternate privileges is limited by - the time instant when the number of active
criticalities in the system changes.

PROOF. From Theorem 4.2, it follows that subjects receive alternate privileges
if and only if there is at least one criticality in the system. The alternate set of
privileges for subjects are rescinded in Line 9 of Figure 4 and new privileges are
provided by executing Line 32 of Figure 4. Both these actions can be executed only
if there is a change in the current state of the system (Line 6, Figure 4), which can
happen only if there is a change in the number of active criticalities (occurrence of
new one or control of existing one) in the system. [

THEOREM 4.4. Non-Repudiation: Malicious use of alternate privileges when
system is experiencing criticalities is non-repudiable and limited to a finite duration.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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PrROOF. Line 34 of Figure 4 ensures that whenever a role is changed and a request
for resource is successful, it is recorded along with the appropriate start and end
times enforcing non-repudiation of any malicious activity by a subject due to the
new privileges. As we assume that all the access control policies execute correctly,
the records are accurately updated. From Theorems 4.2 and 4.3, it follows that
subjects are granted alternate privileges only in the presence of criticalities and
the maximum time for which the alternate privileges are granted is limited by the
time when a change in the number of criticalities occurs, thereby limiting potential
malicious activity to a finite amount of time. O

THEOREM 4.5. Safety: Only authorized access is allowed to 1) objects and 2)
access control constructs within the model.

PROOF. 1) Access to resources is allowed, only if ACP evaluates to true. Now, as
in both normal and critical situation subjects access to an objects is only by invoking
the ACP, authorized access is ensured. 2) Access to modify constructs of the access
control model can be done by executing any of the CAAC administrative policies.
Each of these predicates can be executed only by CAAC using the administrator
role (Uzdmin ), thus ensuring authorized access to the access control model. [J

We claim from the above theorems that CAAC satisfies all the five criteria set forth
in Section 2.2 and hence meets the design goals of proactivity and adaptiveness.

5. CASE STUDY: MEDICAL AND FIRE EMERGENCY ON AN OFFSHORE OIL RIG

In this section, we give an example of how CAAC can be used for criticality response.
The goal is to show the ability of CAAC to handle any conceivable combination
of criticalities in a system. Consider an emergency situation on an oil rig which
are prone to emergencies situations. The recent blow-out of Deepwater Horizon rig
caused massive oil spill, several casualties and eventual sinking of the rig itself [Oil
Spill 2010]. We look at a combination of two types of criticalities, in such situations,
for this example: 1) health-related and 2) fire accident. We assume that the oil
rig is a smart infrastructure where each individual subject can interact seamlessly
with their environment to obtain services. The smart-environment also keeps track
of the subjects within the rig. The entire rig is managed by a Rig Management
Environment (RME) that provides the common interface for subjects to interact
with. The following subsection discusses the preparation and execution phase of
CAAC in this example.

5.1 Preparation

Before the rig is deployed, in order to handle criticalities within this environment,
planners and engineers of the oil-rig will have to execute CRET in order to deter-
mine the actions which need to be taken during specific emergencies. Four possible
criticalities within the oil rig are considered for this example: cl: a worker on
the rig with a chronic hypertension having a heart attack in the control room; c2:
fire alarm in the control room of the rig; c3: a worker on the rig with a chronic
hypertension having unstable angina in the control room; and c4: people trapped
in control room needing immediate assistance. The Table I provides details for
each criticality and its important characteristics. Figure 5(a) shows the AGM that
would be generated by CRET using the stochastic model described in Section 2.4.1.
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Comparison between different RL choice metric (Optimal, MP and MT)
09 i EVaxQ
Cmp
08 |
0.7
0.6 1
] 0.5
014 s
a 04
0.3
0.2
01 1
C1- CardiacArrest 1 2 3 4 5 6 8 9
C2-Fire System (Critical) States
C3- Angina
(a) C4- FireAssistance (b)
Optimal Greedy (MP) Greedy (MT)
Sate2: 2->1 Sate2: 2->1 Sate2: 2->1
Sate3: 3->1 Sate3: 3->1 Sate3: 3->1
Sated: 4->1 Sated: 4->1 Sated: 4->1
Sate5 5->2->1 Sate5 5->2->1 Sate5: 5->3->1
Sate6: 6->1 Sate6: 6->3->Not Controllable Sate6:  6->3-> Not Controllable
Sate7. 7->3->1 Sate7. 7->3->1 Sate7. 7->3->1
Sate8: Not Controllable Sate8: 8->5-> Not Controllable Sate8: 8->6-> Not Controllable
Sate9: Not Controllable Sate9: 9->6-> Not Controllable Sate9: 9->6-> Not Controllable

(0

Fig. 5. CAAC Example: a) AGM for Medical and Fire Criticalities in Oil
Rig, b) Criticality Response P*-Values at each critical state, c) Path to
Normal State for each Critical State.

The probabilities of the CLs and RLs have been obtained from various studies on
occurrences of emergencies and response errors for medical ailments [Chan et al.
2008], [Pope et al. 2000], [Khot et al. 2003], and [Hendrix et al. 2004] and oil rig
management [DiMattia et al. 2005]. The CRET is then executed to determine the
response actions for each critical state in the system using the optimal planning
criterion for choosing RL at each state (based on P*-value).

Figure 5(b) shows comparative results, in terms of P*-value, on probability of
successfully controlling all the active criticalities within the system. It can be seen
that as the number of criticalities in the system increases, the probability of reach-
ing the normal state decreases. Further, as the number of states in this example
are limited, the optimal solution and the heuristics yield similar P*-values. The
execution of CRET gives us the next link from each critical state in order to have
the maximum probability of reaching the normal state. These collections of links
can be viewed as a path to the normal state. Figure 5(c) shows the paths yielded
by the optimal and greedy criteria. Note that, even if the P*-value may be identical
for the optimal and greedy approaches, the actual path and therefore the response
actions that need to be taken may be different as can be seen for State 6 in Figure
5(c). For some critical states, the optimal planning criterion returns a zero P*-
value. The heuristic planning criteria provides some set of actions in all the cases,
but there is no guarantee that all criticalities in the system will be controlled, as
in the case of States 8 and 9 for both MT and MP. Given the path, the planners
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Objects ACLs Objects ACLs
Object Role Read Write Execute Object Role Read Write Execute
Health Data Rig-Medic True False - Health Data Rig-Medic True False
(Temp, BP SpO2 7o x True True . (Temp, BP, SpO2 75 of.x True True
etc) of X etc)
Control-Room Rig-Manager B - Yes CAACRole flive fliue
(CR) Door Al— (RigManager) | - - 0 goor;:ro\—Room Rig-Manager 5 5 Yes
All - {Rig-Manager} - - No
Defibrillator Al No CAACROle . . Vos
Extinguisher Al - - No Defibrillator Al No
CAAC-Role - - Yes
Normal State Subject Status (SPR) Extinguisher All - - No
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; "
b7t lsedg | Criticality  Subject  Active old Role
X Geologist D Role
c1 D-1 CAAC-Rol Rig-Medi 0ld Role
- Role ig-Medic
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. =) D-2 CAAC-Role | Rig-Medic
Subject Context L
Subject ID Context Criticality  Static Dynamic Selection Subi
i ubject
ID-1 infirmary Subjects Jec
1 T Selection
X Control Room il it (55+DS)
Normal State | Critical State | 2 [E || infirmary/Cabin/Control Room |

Fig. 6. CAAC Example - Access Control Structures.

can easily identify the set of actions that need to be executed, and the order in
which they have to be executed, to ensure that the criticalities present within the
system can be controlled. For example, using the optimal criteria, the path from
State 5 goes to State 2 and then to the normal state. Therefore, in order to have
a high probability of reaching the normal state, one needs to first take actions to
respond to the fire and then respond to the heart-attack. Apart from determining
the task set for a specific criticality, the planners also determine other requirements
for specific criticalities such as subjects that need to take response actions. As men-
tioned previously, subjects can be selected based on their capabilities (statically)
or based on their contexts (in this example we consider only the location context
for simplicity).

5.2 Execution

Given the response actions that need to be taken at each critical state in the system,
we now illustrate how CAAC functions. Figure 6 shows the access control constructs
used by CAAC for performing access control in this scenario. The tables on the
left side of the rig show elements in normal state, while the ones on the right show
the values during criticalities. Consider the scenario where a hypertensive crew
member (Geologist, ID-X) in the control room has had a heart attack (c1). The
CAAC model which is routinely evaluating the system state (every ¢, time units)
notices that the system is not in the normal state any more but in the critical state
(State 2 in the AGM). It determines that the path to reach the normal state is
by responding to the criticality cl directly. The task-set for this has two actions
- enable defibrillation, and provide access to X’s health information. CAAC then
checks the SS and DS tables to identify the best subjects to take the criticality.
This is the rig-medic. The CAAC then changes the role of the rig-medic to a
temporary CAAC-role, updates the ACL of objects - defibrillator, and health data
of X with the new role which has the appropriate privileges (see Figure 6). It then
informs the rig medic about the changes, who can take the required action.

If before the arrival of the medic, a fire breaks out in the control room (¢2), then
the system is now in State 5 of the AGM. In this state, based on the prior execution
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Table II. Comparison of Different Access Control Classes with CAAC (Here R - RBAC,
C - CA-RBAC, B- CBAC, U-UCON, O-0S,P-PBMS - PS, and A - COAQC).

Properties R C B U O P S A CAAC
Proactive - - - - - - - Yes Yes
Adaptive - - - - Yes - Yes Yes Yes
Alternate Privileges | - Yes Yes Yes Yes Yes Yes Yes Yes
Single Criticality - - - - - - - Yes Yes
Multiple Criticality - - - - - - - - Yes

of the AGM by CRET, leads CAAC to prioritize fire control over medical emergency.
CAAC then determines that all the subjects within the range of the control room
- i.e., those in infirmary, cabins and control room be given the privileges to control
the fire (Technician,ID-3; Rig-Manager,ID-4; and Rig-Medic,ID-1 in our example).
Further, the task set for criticality ¢2 states that the object fire extinguisher be
provided access to. CAAC provides the privileges to all the people in the three
locations with access to the fire-extinguisher object, by changing their active role
to CAAC-role (the old roles are stored in the OL table) and adding an entry to fire
extinguisher object’s ACL (see Figure 6). It then informs all the chosen subjects
about the changes, who can take the required action.

As the state of the system changed before providing privileges for fire fighting,
it rescinds the privileges of the rig-medic for handling ¢1, in order to enable them
to fight the fire which is far more dangerous to many more people. Once the fire
is controlled the system moves back to State 2 in the AGM, and the rig-medic
is provided the privileges for accessing X’s data and using the defibrillator as he
sees fit. The privileges for fire-fighting are rescinded, and the old roles of subjects
involved are returned (except rig-medic who is now the chosen subject for cl).
Once the heart-attack is controlled as well, the system is in the normal state and
the role of the rig-medic is also changed to the default value. If suppose the X’s
heart-attack cannot be controlled within its W,, then the privileges of rig-medic are
rescinded by changing their roles to the original values. All the actions taken during
the criticality response are recorded for determining the effectiveness of CAAC. The
example thus demonstrates how CAAC can be used for managing criticalities within
the system by providing the right set of privileges, to the right set of subjects, at
the right time for the right duration.

6. RELATED WORK

Much work has been done with respect to access control for smart infrastructures
and other systems. This section discusses some of the prominent classes of access
control and their utility for privacy preserved criticality management. Table II
presents a summary of the capabilities of CAAC and traditional access control
models.

One of the most influential access control models for enabling authorized infor-
mation release is the Role Based Access Control (RBAC) [Sandhu et al. 1996]. By
de-coupling the process of directly associating privileges with a subject, RBAC pro-
vide an effective and easy way of managing security and enforcement of complex
access control policies within the system. The concept of RBAC has been general-
ized in [Moyer and Ahamad 2001] by incorporating subject roles, object roles and
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environment roles. As most systems have dynamic requirements, RBAC was further
extended by including different types of context information in the access control
decision making process, leading to the development of Context Aware-RBAC (CA-
RBAC) [Covington et al. 2001] [Joshi et al. 2005]. Over the years, newer paradigms
of access control have been proposed such as Context Based Access Control (CBAC)
[Corradi et al. 2004] which divert from the role-based approach, by associating priv-
ileges directly with context information for each subject and avoids the notion of
roles increasing the simplicity. Usage Control (UCON) [Wang et al. 2006] is an-
other alternative which combines the notions of access control, trust management
and digital rights management to provide finer grained access control to a subjects
who may not be known to the system. None of these schemes were designed for
privacy preserved criticality management. They are reactive in nature and wait
for subjects to ask for specific privileges, which may introduce arbitrary delays in
response. Further, none of them consider the stochastic nature of criticalities, the
need for urgent response actions and human error involved in executing them. In
[Povey 2000], the author presents the notion of Optimistic Security (OS), which lets
subjects exceed their default privileges but in a semi-constrained manner in that:
1) it records all actions taken during the time when subjects exceed their privileges,
2) it allows subjects to execute only those actions which can be rolled back, and 3)
provided a supervisor agrees to it. OS, like CAAC framework, allows subjects to
perform actions which require privileges exceeding their default values. However,
it does not control the duration for which alternate privileges are provided and
requires human intervention; thus making it unsuitable for criticality control.

Much work has also been done towards developing Policy Based smart-space
Management (PBM) schemes. Such schemes allow for influencing the behavior of
smart-spaces without hard coding the behavior into them [Bettini et al. 2002] [Kagal
et al. 2003], [Sloman and Lupu 2002]. In case of an event, and a pre-defined set of
system conditions take a particular action. The PBM schemes are adaptive and can
be easily used to provide alternate privileges to subjects when needed. However,
their lack of awareness of the criticalities, the associated stochastic characteristics
along with their event based triggering of change are too simplistic to suite the
needs of criticality response, especially in the event of multiple criticalities. A novel
policy based model which possesses some of the adaptiveness of CAAC, is called the
Policy Spaces (PS) [Ardagna et al. 2008]. PS divides the policies into groups which
provide mandatory access, mandatory access denial and planned exceptions. The
idea is that for specific situations, policies provide access which are not normally
allowed, just as in CAAC. However, the principal drawback of both PS and PBM is
that they are reactive in nature awaiting access requests from subjects before they
allow or disallow any actions, which may waste valuable time.

The notion of altering access control privileges to enable criticality management
for smart-spaces was first introduced in our preliminary work which we refer to as
Criticality-Oriented Access Control (COAC) in [Gupta et al. 2006]. However, the
scheme was limited in scope as it only addressed systems with single criticality. It
did not provide a mechanism for determining the response actions or dealing with
the stochastic nature of criticalities.
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7. CONCLUSIONS

In this article, we presented the Criticality Aware Access Control (CAAC) approach
for proactive and adaptive access control during emergencies. In this regard, CAAC
facilitates response actions to specifically chosen subjects in system by providing
them with access privilege for executing response actions, without their asking for
it. It uses a stochastic model called Action Generation Model (AGM) to deter-
mine response actions, in an off-line manner, given a combination of criticalities
are present within the system. Detailed policy specifications and implementation
details for CAAC have been also been provided. Further, we have validated it
based on its principal properties of proactivity and adaptiveness, and also provided
a detailed example, in the context of an oil rig, of how CAAC functions.
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