
A Methodology for Systematic Attack Trees
Generation for Interoperable Medical Devices

J. Xu, K. K. Venkatasubramanian
Dept. of Computer Science

Worcester Polytechnic Institute
Worcester, MA, 01609

Email: {jxu3,kven}@wpi.edu

Vasiliki Sfyrla
Unaffiliated

Grenoble, France
Email: vasiliki.sfyrla@gmail.com

Abstract—Security for medical devices has gained some trac-
tion in the recent years following some well-publicized attacks
on individual devices, such as pacemakers and insulin pumps.
This has resulted in solutions being proposed for securing these
devices, usually in stand-alone mode. Medical devices are however
becoming increasingly interconnected and interoperable as a way
to improve patient safety, decrease false alarms, and reduce
clinician cognitive workload. Given the nature of interoperable
medical devices (IMDs), attacks on IMDs can have devastating
consequences. This work outlines our effort in understanding
the threats faced by IMDs, an important first step in eventually
designing secure interoperability architectures.

A useful way of performing threat analysis of any system is
to use attack trees. Attack trees are conceptual, multi-leveled dia-
grams showing how an asset, or target, might be attacked. They
provide a formal, methodical way of describing the threats to a
system. Developing attack trees for any system is however non-
trivial and often requires considerable expertise in identifying the
various attack vectors. IMDs are typically deployed in hospitals
by clinical engineers who may not possess such expertise. We
therefore develop a methodology that will enable the automated
generation of attack trees for IMDs based on a description of
the IMD operational workflow and list of safety hazards that
need to be avoided during its operation. Both these pieces of
information can be provided by the users of IMDs in a care
facility. The contributions of this paper are: (1) a methodology
for automated generation of attack trees for IMDs using process
modeling and hazard analysis, and (2) a demonstration of the
viability of the methodology for a specific IMD setup called
Patient Controlled Analgesia (PCA-IMD), which is used for
delivering pain medication to patients in hospitals.

I. INTRODUCTION

Recent years have seen rapid growth in interoperable
medical devices (IMDs) [1]. IMDs are medical cyber-physical
systems that enable effective patient care by coordinating
patient-side medical devices in a clinically meaningful manner.
IMDs have the potential to provide many clinical benefits
such as a decrease in false alarms and real-time medication
interaction checking [1]. Given the safety-critical nature of
the IMDs, understanding the security threats that IMDs can
be subjected to is essential. In the IMD context each threat
has the potential to cause physical harm to the patients either
in the short-term (untimely actuation) or long-term (incorrect
diagnosis and treatment).

A useful way to perform threat analysis of any system
is to use attack trees. Attack trees are a systematic way

of characterizing the security of a system based on varying
attacks [10]. They describe the attacks on a system by first
identifying the goal of the attack as a root node of a tree.
The way the adversary reaches this goal interactively and
incrementally is expressed as lower nodes in the tree. Each
path in the attack tree from the leaf node all the way to the
root node describes a unique attack on the system [7]. The
advantage of attack trees is that it provides a graphical view
of the threats of the system that can be easily understood and
acted upon. However, generating these attack trees requires
considerable expertise in threat analysis. IMDs are typically
deployed in hospitals by clinical engineers who may not posses
such expertise. Therefore, it is imperative to develop solutions
that can generate attack trees for IMDs in a systematic manner.

Methods for systematically generating attack trees has been
studied before, mostly in the context of network security [9],
[11]. The typical approach has been to develop a model of the
system in question using formal methods tools (e.g, SPIN) and
generate attack trees from the resultant specification. These ap-
proaches were designed for security experts who manage large-
scale enterprise networks and requires considerable knowledge
of formal methods. Using such approaches for IMDs is not
very practical, as it essentially replaces the need for area
of expertise (i.e, threat analysis) with the need to develop
expertise in another area of expertise (i.e., formal methods
and static analysis). As IMDs are deployed on-demand and
managed by clinical engineers in a care facility, who are
more focused on practicalities of operating medical systems
rather than mathematical modeling, existing approaches for
attack tree generation may not be viable. We therefore need a
methodology that is easy for clinical engineers to understand
and use.

In this paper, we present a methodology for generating
attack trees for IMDs that takes two inputs: operational
workflow of the IMD and a hazard analysis of the IMD in
question. To describe the operational workflow of the IMD,
we use a process modeling tool to describe our IMD system
as it is deployed, initialized, and operated by the caregiver.
Hazards can be thought of as system states that are inherent
unsafe for the user. Hazard analysis involves identifying system
states that will eventually lead to physical harm for the patient.
Both these inputs can be easily described by the clinical staff,
as opposed to an abstract mathematical representations of
the workflow that formal methods based approaches require.
Once the process model is built and hazards identified, our

ICE	 Network	 Controller	

App	 1	 App	 2	 App	 3	

ICE Supervisor

Medical	
Device	 1	

Medical	
Device	 2	

Medical	
Device	 3	

Fig. 1: ICE Architecture

methodology generates a number of fault-trees for the system
with the goal of enabling the hazards. A fault-tree is a top
down deductive failure analysis in which an undesired state of
a system is analyzed using Boolean-logic to combine a series
of lower-level events. Attack trees are similar to fault-trees
except they connect one or more attacks (instead of faults)
toward an attack goal (e.g., over-infusion of medication). Each
fault-tree generated in the last step indicates a path to one
specific hazard. Finally, we combine the hazards, and the
associated fault-tree, that lead to patient harm in the exact
same way (e.g., over infusion) under a common root node (i.e.,
attack goal). The fault tree node descriptions are modified from
faults caused within the system to attacks that are deliberately
induced by an adversary to create the final attack tree.

Note that the proposed approach for generating attack trees
is designed to complement mainstream security analysis such
as risk management approach. Traditional risk management is
defined as a four step approach: (1) defining the context of
risk, (2) assessing the extent of risk present, (3) responding to
the risk and (4) finally monitoring the vulnerable elements of
the system for future risk [5]. Attack trees provide a means
to assess the risk present in a workflow/system and help in
determining which elements of the system are at risk and
need to be addressed. The leaf nodes particularly describe the
specific points within the system that need to be secured to
ensure overall system security. The leaf nodes also describe the
threats and therefore automatically suggest countermeasures as
a way of responding to the risk identified. Finally, the attack
trees help in determining which elements of the system to
monitor as a way of mitigating future risk.

We make the following contributions in this paper. (1)
We develop a methodology for generating attack trees in the
context of interoperable medical devices. (2) We demonstrate
the viability of the methodology for a specific IMD setup
called Patient Controlled Analgesia (PCA-IMD), which is
used for delivering pain medication to patients in hospitals.
Even though we focus on the PCA-IMD setup, the proposed
methodology and tool can be used for any IMD system whose
security we wish to analyze using attack trees

The rest of the paper is organized as follows. Section II
presents the background. Section III presents the PCA-IMD
system model, and our adversary model. Section IV presents
the methodology with examples focusing on the PCA-IMD
setup. Section V presents the related work and Section VI
concludes the paper.

II. BACKGROUND

Before we delve into the details of the attack tree genera-
tion, it is useful to present a short overview of interoperable
medical devices and their basic architecture. The predominant
standard in enabling medical device interoperability is the
Integrated Clinical Environment (ICE) standard, which was
created to enable diverse medical devices to talk to one another
[4]. ICE was designed to act as a middleware to enable
interaction of legacy, stand-alone medical devices and the
applications using the medical devices. It has the potential to
provide anything from data aggregation to closed-loop control
over the patient’s health. The architecture of ICE consists of
three entities (see Figure 1):

• A collection of Medical Devices on or around a single
patient that can perform monitoring and actuation.

• The Supervisor receives data from the various medical
devices, processes it, and initiates action from the
medical devices. The Supervisor runs clinical appli-
cations (referred to as apps from now on) that use
the connected devices to support a clinical scenario
selected by the caregiver.

• The Network Controller interfaces with one or more
medical devices and the supervisor. It is responsible
for collecting data from the individual devices. It
also connects the entire setup to an external network,
such as the Healthcare Information System (HIS). The
network controller also records all the actions of the
entire system in a data logger (not shown) for future
analysis.

III. SYSTEM MODEL

In order to make the discussion of the methodology con-
crete, we describe it by illustrating how it works for an IMD
setup for enabling Patient-Controlled Analgesia (PCA-IMD)
(see Figure 2). In this section, we describe the system model of
the PCA-IMD setup followed by a description of the adversary
who is expected to attack this system. The adversary model
essentially scopes the eventual attack tree that is generated by
our methodology.

PCA-IMD System Model: The aim of PCA-IMD is to
allow patients to inject themselves with pain medication (e.g.,
morphine) in a safe manner. PCA-IMD consists of an infusion
pump programmed to infuse pain medication (e.g., morphine)
to the patient at a specific (basal) rate in a hospital or care-
facility. As pain medications tend to suppress respiration,
we also have a pulse-oximeter measures level of O2 in the
blood) and a capnograph (measures level of CO2 in the
blood) to determine how the patient is responding to the
pain medication. The pulse-oximeter and the capnograph are
collectively referred to as sensors, in the rest of the paper
(see Figure 2). The details of the network controller and
supervisor are abstracted out into a coordinator entity in
our analysis to keep the discussion simple. The coordinator
(through the network controller) interfaces with the hospital
electronic health record (EHR) system. It can update and query
the EHR when needed. For example, a medical application
running on the coordinator can be used to perform a sanity
check on the nurses programming of the infusion pump based
on medication orders in the EHR.

Fig. 2: PCA-IMD Setup

PCA-IMD is configured for each patient according to
their individual needs. This means: (1) deploying the pump,
oximeter and capograph on the patient, (2) scanning the patient
id for indexing the patient data into hospital EHR system, (3)
connecting the three medical devices to the network controller
and the supervisor, (4) deploying an app on the supervisor for
enabling safe delivery of pain medication, and (5) monitoring
the patient’s well-being during the treatment. The caregiver
monitors the patient through the patient display (dashed arrow
in Figure 2). The coordinator receives status updates from the
individual medical devices, and it displays the information
to the caregiver via the patient display. If the blood oxygen
level of the patient goes below a certain threshold, a medical
application on the coordinator will raise an alarm to the
caregivers. The infusion pump and the sensors are programmed
directly by the caregiver using a computer-on-wheels PC based
on the patient status information on the patient display, which
the coordinator provides.

PCA-IMD Adversary Model: In our interoperability
setup, we consider the coordinator and the associated logging
and alarms to be the only members of the trusted computing
base (TCB). These components are trusted (they do not
have malicious intent) and trustworthy (they will operate as
expected). The dashed box in Figure 2 signifies the TCB in
our system model. Further, we assume that the caregiver is not
necessarily trustworthy, in that the caregiver can make mistakes
in programming the devices, but does not have malicious
intent. We further assume that the infusion pump in our system
model is verifiably safe as described in [6].

For our work, we consider active adversaries who may
interfere with communication links, as per the Yao-Dolev
model of an adversary [3]. In addition, the adversary may
also physically alter the infusion pump, the coordinator, the
pulse oximeter, and capnograph, and their individual settings,
respectively. Note that, while adversaries may simply inject the
patient directly and induce a medical emergency, we consider
such attacks outside the scope of interoperable medical device
security. Finally, we only consider adversaries whose attack
goal is over-infusion (for pain medication under-infusion does
not hamper patient safety) through the infusion pump in the
PCA-IMD setup.

Process	
Modeling	

Iden/fying	
Hazards	

Fault	 Tree	
Genera/on	

A;ack	 Tree	
Conversion	 A;ack	 Tree	

Unsafe	 state	
defini/on	

System	
Workflow	
descrip/on	

1	

2	

3	 4	

Fig. 3: Attack Tree Generation Methodology

IV. ATTACK TREES GENERATION METHODOLOGY

An overview of the methodology for attack tree generation
is shown in Figure 3. It has four elements. First, the user (i.e.,
clinical engineer) of the IMD takes an abstract description
of the workflow of IMD and develops a process modeling
representation for it. This representation essentially describes
the operation of the IMD, which in our case is PCA-IMD.
Once the process model is developed, the IMD user identifies
the various hazards that can occur due to the operation of
the system. The hazards are essentially unsafe states of the
IMD, which can harm the system itself or the user. In our
case the unsafe state of interest w.r.t. hazard analysis are those
that eventually lead to over-infusion of pain medication, our
attack goal. Given the hazards that lead to over-infusion and
the process model of the IMD, we derive several fault-trees for
the system. The fault-trees essentially provide a representation
of the means by which the hazards can be realized due to faults
within the system. Once the fault-trees have been extracted, we
combine them in a meaningful fashion to generate a global
attack tree for the IMD setup such that the root node of the
tree is the attack goal of over-infusion of medication. The rest
of the section describes these steps in more detail.

A. IMD Workflow Description

The first step in our approach is to use process modeling
to describe the workflow of the IMD. To model the workflow
we use a tool called Little-JIL [2]. Little JIL provides a
graphical language used to define real-world processes. It is
very expressive in capturing the nuances of the workflow and
has well-defined semantics. Figure 4 shows the coordination
specification of our PCA-IMD setup defined in Little-JIL. A
Little-JIL process definition consists of three components, an
artifact specification, a resource specification, and a coordi-
nation specification. The artifact specification contains the
items that are the focus of the activities carried out by the
process. In our case this means the information exchanged
between the various entities PCA-IMD e.g., Ox Ctrl (the
settings for pulse-oximeter) or Cap Data (the output of the
capnograph). The resource specification describes the agents
and their capabilities in the workflow. For example, the care-
giver, coordinator, capnograph etc. Finally, the coordination
specification ties everything together by specifying which
agents and supplementary capabilities perform which activities
on which artifacts at which time(s). This is what is essentially
represented in Figure 4.

Fig. 4: Little-JIL-based Process Modeling of PCA-IMD Workflow

In describing the operational workflow of the PCA-IMD
using process modeling we begin at the time when the devices
in the IMD are deployed around the patient all the way
to dismantling the PCA-IMD. For space, reason we do not
describe the entire specification, rather only some of the impor-
tant modeling elements. The root step Interoperable Medical
Device System is a sequential step containing three sub-steps
that need to be carried out in order, from left to right. This
means that the left-most sub-step Caregiver Initializes IMD
Process is executed first. Caregiver Initializes IMD Process
is also a sequential step (as indicated by the unidirectional
arrow in the box representing the step), which means each
of its sub-steps Caregiver scans barcode to generate Patient-
ID, Caregiver scans barcode to generate Device Type and
EHR database checks Patient ID matches Device Type have
to execute in order for it to complete. The step Capnograph ...
generates Cap Data, on the other hand, is a parallel step ((as
indicated by the bidirectional arrow in the box representing the
step) where each of its three sub-steps are expected to execute
concurrently. During the execution, each Little-JIL step has an
artifact declaration defining the artifacts it will be accessing
or providing. Artifacts are passed through the coordination
hierarchy between steps and their sub-steps. Finally, for each of
these steps, exception handlers are defined (as indicated by the
“X” in the box representing the step), which are thrown when
the inputs to a certain step are not defined. For example, in
Caregiver scans barcode to generate Patient ID, if Patient ID
is not in the EHR, then exception Patient ID Unavailable is
thrown.

B. Hazard Analysis and Fault-Tree Extraction

Once the process modeling is complete, we derive fault-
trees for it. The fault-trees represent the various ways in
which the system being modeled can fail or in our case harm
the patient. In our context, a hazard is the occurrence of

TABLE I: Possible Hazards in PCA-IMDs leading to Over-
infusion

No. Possible Hazard Description
1 Patient ID scanned is Erroneous
2 Device Type scanned is Erroneous
3 Device Type match withPatient ID Erroneous
4 Cap Data Erroneous
5 Ox Data is Erroneous
6 Pump Out is Erroneous
7 Patient Out is Erroneous
8 Care Out is Erroneous
9 EHR Data In is Erroneous
10 EHR Data Out is Erroneous

unsafe/unexpected states within the system that will inevitably
lead to patient harm. In the PCA-IMD setup all the hazards
essentially focus on preventing over-infusion of pain medica-
tion to a patient. Table I shows the list of possible hazards
considered for the PCA-IMD that may cause over-infusion.
We derive a fault-tree for each of these hazards. Fault-trees
are essentially a systematic way to identify and evaluate all
possible causes for them. A fault-tree consists of two basic
elements events and gates. At the top (root) of the fault-tree is
the hazard. In the fault-tree, intermediate events are expanded
further, and leaf events are not. Events are connected to each
other by Boolean-logic (AND, OR and NOT) gates [2].

We again use the Little-JIL modeling tool, which takes
in as inputs a list of hazards along with the process model
to generate the fault-trees [2]. To derive a fault-tree a given
hazard is represented as an intermediate event called the TOP
event. Starting with a fault-tree that only has the TOP event,
the fault-tree derivation procedure expands the fault-tree by
developing intermediate events in it. An intermediate event
is developed by analyzing the process model to identify the
immediate, necessary, and sufficient events that cause this
event, and then connecting those events to it via a proper gate.
The new events may also be intermediate events that need

Ar#fact	 EHR_Data_Out	 is	 Erroneous	

Excep#on	 Pa,ent_ID	 Not	 Existed	
is	 not	 thrown	 by	 step	 EHR	
database	 receive	 Pa,ent_ID	 to	 	
generate	 EHR_Data_Out	

Step	 EHR	 	
database	 receive	 	
Pa,ent_ID	 to	 	
generate	 	
EHR_Data_Out	 	
produces	 wrong	 	
EHR_Data_Out	

Excep2on	 Scan	 Error	 is	 not	 	
thrown	 by	 step	 EHR	 database	
receive	 pa,entID	 to	 generate	 	
EHR_Data_Out	

Excep#on	 Pa,ent_ID	 Not	 Existed	 is	 	
thrown	 by	 step	 EHR	 database	
receive	 Pa,ent_ID	 to	 generate	 	
EHR_Data_Out	

Excep2on	 Scan	 Error	 is	 	
thrown	 by	 step	 EHR	
database	 receive	 Pa,ent_ID	 	
to	 generate	 EHR_Data_Out	

Hazard	

Gate	

•  Ar#fact	 EHR_Data_In is	 incorrect	 when	 the	 	
step	 EHR database receive Patient_ID
to generate EHR_Data_Out is	 completed	

OR	

OR	

NOT

NOT

Fig. 5: Example partial fault-tree for a specific hazard
(EHR data incorrect)

to be developed further. The derivation procedure terminates
when no intermediate events exist in the fault-tree that can be
described further [2].

Consider the following example of the aforementioned
fault-tree extraction process. One class of requirements is that
patient medical data collected by the sensors should never
be modified, as this might mislead the caregiver who can
then incorrectly program the infusion pump leading to over-
infusion. In this regard, we define a hazard EHR Data Out
is Erroneous, which describes the situation when the EHR
data sent to the caregiver detailing the current and the past
state of the patient is incorrect. Using this hazard definition
we wish to describe various scenarios during the operation of
the PCA-IMD that may lead to the EHR being modified or the
data being corrupted during transit. Figure 5 shows the fault-
tree generated for the hazard EHR Data Out is Erroneous.
Here, the EHR Data Out is the artifact of interest, which is
the label for the data provided by the EHR to the caregiver
who uses it to program the pump. The hazard in the fault-tree
(which is shown as the root node) indicates that the artifact
EHR Data Out is incorrect. The error is caused when the EHR
receives the Patient ID it produces the wrong EHR Data Out
value associated with the patient as indicated by the OR-
gate underneath root node. The reason for producing the
wrong EHR Data Out given Patient ID can be one of three
conditions as shown in the partial fault-tree in Figure 5: (1)
the data associated with the patient EHR is erroneous, (2)
Patient ID doesn’t exist in the EHR database, or (3) the
Patient ID scanned was erroneous. As the EHR Data Out is
transmitted over a communication medium, we actually have
additional conditions to consider where the data is modified
during transit, which we don’t show to the discussion simple.

C. Attack-Tree Conversion

The availability of fault-trees allow us to convert it to
an attack tree, which can be thought of as fault-trees where
the faults are caused deliberately by adversaries. The attack
trees indicate different attack paths to make different hazards
happen during system execution. It is important to note that
fault-trees, in additional to describing how hazards manifest

themselves, provide us with description of the relationship
between the various artifacts. For instance, EHR Data Out
is related to Ox Data, therefore if Ox Data is modified, the
value of EHR Data Out may not be accurate any more. This
incorrect EHR data may eventually lead to over-infusion. In
generating the attack tree from fault-trees we preserve such
associations between artifacts, when we analyze the effects of
attacks mounted by adversaries in terms of the hazards they
may eventually cause.

We use a three step process in converting a fault-tree into
an attack tree:

• Step 1: Classify the different fault-trees based on
whether their artifacts have associations. For example,
if artifact A is associated with artifact B, then fault-
trees using A and B should be classified into one
group. For example consider the hazard Care Out is
Erroneous. The artifact Care Out, the value sent by
the coordinator to the caregiver’s PC representing the
state of the patient and her treatment, is made up
of three other artifacts namely Cap Data, Ox Data,
and Pump Out. Therefore, the fault-trees that affect
Cap Data, Ox Data, and Pump Out are combined in
the attack tree generated.

• Step 2: Concatenate different groups with appropriate
logical AND or OR operators. If two fault-trees share
a root node then the OR operation is used to connect
them, otherwise an AND operator is used, and a new
parent node is created for the groups in the attack tree.

• Step 3: The node descriptions are modified from faults
that materialize in the system to attacks where they are
deliberately induced by the adversary.

Figure 6 shows the entire attack tree of our PCA-IMD sys-
tem. Instead of using explicit AND and OR operator symbols
in the tree as is customary, we use the shape of the node
to describe the operation. A rounded rectangle node indicates
that all its children are ORed, while a regular rectangle node
indicates that all its children are ORed. The leaf nodes are
denoted by the filled rectangle boxes and numbers G1 to
G22. Each path in the tree from the leaf node all the way
to the root node denotes a way to attack the PCA-IMD, which
needs to be protected. In general all attacks on PCA-IMD can
be divided into two general categories: (1) those where the
adversary directly manipulates the pump settings provided by
the caregiver Pump Ctrl by mounting attacks on the pump or
the communication between the PC and the pump (G1-G3),
and (2) those where the adversary indirectly causes incorrect
Pump Ctrl settings in the pump by delaying, tampering, or
loosing sensor measurements, pump status information, or
EHR data (G4-G22).

V. RELATED WORK

Using attack trees for analyzing the security has been
studied before for a variety of systems. Prominent examples
include Supervisory Control And Data Acquisition (SCADA)
[13], cyber-physical systems [15], and interoperable medical
devices [12]. However, none of these approaches provide any
systematic means of generating the attack trees. Their focus

Group	 2b-‐4	

Group	 2b-‐5	

G1:	 Adversary	 	 modifies	
pump	 actua:on	 message	
directly	 on	 pump	 (start/
increase	 injec:on	 rate)	

G3:	 Adversary	 modifies	 drug	
concentra:on	 directly	 on	
the	 pump	 (not	 like	 actua:on	
command)	

Adversary	 directly	 disrupt	 pump_ctrl	

Over	 infusion	

Adversary	 indirectly	 disrupts	
pump_ctrl	 (Other	 factors	

mislead	 caregiver	 to	 change	
pump	 actua:on	 command)	

Adversary	 disrupts	
EHR	

Adversary	 modifies	 	
Pump_Out	 with	
incorrect	 value	

Adversary	 modifies	 	
Ox_Data	 with	
incorrect	 value	

Adversary	 modifies	 EHR	
record	 to	 mislead	 caregiver	
(e.g..	 caregiver	 would	 giver	
more	 medicine	 to	 pa:ent)	

G14:	 Adversary	
physically	
compromise	 pump	

G16:	 Adversary	
physically	
compromise	
Capnograph	

G13:	 Adversary	 exploits	
wireless	 transmission	
<pump,	 Coordinator>	 to	
modify	 Pump_Out	

G15:	 Adversary	
exploits	 wireless	
transmission	
<Capnograph,	
Coordinator>	 to	
modify	 Cap_Data	

G17:	 Adversary	 physically	
compromise	 pulse	 ox	
(e.g..pulse	 ox	 is	 broken	
and	 measurement	 is	
always	 within	 normal	
range)	

G22:	 Adversary	
exploits	 wired	
transmission	 <EHR,	
PC>	 to	 modify	
EHR_Data_In	

G18:	 Adversary	
exploits	 wireless	
transmission	
<pulse	 Ox,	
Coordinator>	 to	
modify	 Ox_Data	

G21:	 Adversary	
exploits	 wireless	
transmission	 <EHR,	
Coordinator>	 to	
modify	 EHR_Data_Out	

G20:	 Adversary	
physically	 modify	 EHR	 	
database,	 modify	
pa:ent’s	 informa:on	
(e.g..	 changes	 previous	
medical	 history	
informa:on)	

G19:	 Adversary	
exploits	 wireless	
transmission	 <PC,	
Coordinator>	 to	
modify	 Care_Out	

Adversary	 delays/
looses	 pump_Out	 	

G8:	 Adversary	
Exploits	 wireless	
transmission	 <Pump,	
PC>	 to	 delay	
pump_Ctrl	

G9:	 Adversary	
Exploits	 wireless	
transmission	
<Pump,	 PC>	 	 to	
modify	 pump_ctrl	
(e.g..	 reduce	
sampling	 rate)	

G10:	 Adversary	
Exploits	 wireless	
transmission	 <Pump,	
PC>	 to	 delay	
pump_out	

G11:	 Adversary	
physically	 compromise	
pump	 (e.g..	 pump	 is	
broken,	 it	 does	 not	
send	 pump_out	 	
regularly)	

G12:	 Exploit	 wireless	
transmission	 <PC,	
Coordinator>	 to	
delay	 Care_Out	

Adversary	 delays/looses	
Cap_Data/Ox_Data	

G7:	 Adversary	
Exploits	 wireless	
transmission	
<Pulse	 Ox/
Capnograph,	
Coordinator>	 to	
delay	 Cap_Out/
Ox_Out	

G4:	 Adversary	
Exploits	 wireless	
transmission	
<Pulse	 Ox/
Capnograph,	 PC>	
to	 delay	 Cap_ctrl/
Ox_ctrl	

G5:	 Adversary	
Exploits	 wireless	
transmission	
<Pulse	 Ox/
Capnograph,	 PC>	 	
to	 modify	 Ox_ctrl/
Cap_ctrl	 (e.g..	
reduce	 sampling	
rate)	

G6:	 Adversary	 physically	
compromise	 Capnograph/
Pulse	 Ox	 (e.g..pulse	 ox	 is	
broken	 and	 it	 can’t	 send	
pulse	 ox	 regularly)	

Group	 1	 Group	 2	

Group	 2b	
Group	 2a	

Group	 2a-‐1	 Group	 2a-‐2	 Group	 2a-‐3	

Group	 2b-‐1	

Group	 2b-‐2	

Group	 2b-‐3	

Group	 2b-‐4	

AND	

OR	

Leaf	

Adversary	 disrupts	
Care_Out	

Adversary	 modifies	 	 Cap_Data	 with	 incorrect	
value	

G2:	 Adversary	 Exploits	
wireless	 transmission	 <pump,	
PC>	 to	 modify	 pump	
actua:on	 message	

Group	 2c	

Fig. 6: Final Attack Tree

rather is on using the generated attack trees for detailed analy-
sis of the system. Methods for systematically generating attack
trees based on system description have been studied before.
In [11] the authors propose a methodology that uses formal
methods to model a network and generate attack trees for it.
In [8], [9] the authors analyze the security of a network through
the use of model checking. The approaches are very similar
to generating attack trees as a way to verify the security of a
system against threats. Finally, in [14], the authors propose a
static analysis based approach where attack trees are generation
from process algebraic specification of a specific process. All
these approaches require considerable knowledge of formal
mathematical tools and methods and model checking which
IMD users, who are typically clinical engineers interested in
the practical operation of medical systems, may not possess.
Thus applying these approaches in the IMD context may not
be effective and we need a different approach for attack tree
generation for IMDs.

VI. CONCLUSIONS

In this paper we developed a methodology for generating
attack trees based on IMD workflow modeling and hazard
analysis. We also illustrated how the methodology can be
used in the interoperability context by applying it to generate
attack trees for interoperable medical device setup for patient

controlled analgesia (PCA-IMD) with respect to preventing
over-infusion. In the future we plan to extend our methodology
by adding quantification to the attack trees that computes the
security condition of the IMDs. Such an analysis would allow
us to compare multiple instances of an IMD setup to determine
which one is more secure.

REFERENCES

[1] D. Arney, S. Fischmeister, J. M. Goldman, I. Lee, and R. Trausmuth.
Plug-and-play for medical devices: Experiences from a case study.
Biomedical Instrumentation & Technology, 43(4):313–317, 2009.

[2] B. Chen, L. A. Adviser-Clarke, and G. S. Adviser-Avrunin. Improving
processes using static analysis techniques. University of Massachusetts
Amherst, 2011.

[3] D. Dolev and A. C. Yao. On the security of public key protocols.
Information Theory, IEEE Transactions on, 29(2):198–208, 1983.

[4] J. Goldman. Medical devices and medical systems-essential safety
requirements for equipment comprising the patient-centric integrated
clinical environment (ice). ASTM final F-2761-2009, 2009.

[5] Joint Task Force Transformation Initative. Managing Information
Security Risk Organization, Mission, and Information System View.
NIST, 2011.

[6] B. Kim, A. Ayoub, O. Sokolsky, I. Lee, P. Jones, Y. Zhang, and R. Jetley.
Safety-assured development of the gpca infusion pump software. In
Proceedings of the ninth ACM international conference on Embedded
software, pages 155–164. ACM, 2011.

[7] A. P. Moore, R. J. Ellison, and R. C. Linger. Attack modeling for
information security and survivability, 2001.

[8] J. Powell and D. Gilliam. Model checking for network security require-
ments via a flexible modeling framework. In 5th IEEE International
Symposium on Requirements Engineering, 2001.

[9] R. Ritchey and P. Ammann. Using model checking to analyze network
vulnerabilities. In Security and Privacy, 2000. S P 2000. Proceedings.
2000 IEEE Symposium on, pages 156–165, 2000.

[10] B. Schneier. Secrets and Lies: Digital Security in a Networked World.
Wiley, Jan. 2004.

[11] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing. Automated
generation and analysis of attack graphs. In Security and Privacy, 2002.
Proceedings. 2002 IEEE Symposium on, pages 273–284, 2002.

[12] C. R. Taylor, K. Venkatasubramanian, and C. A. Shue. Understanding
the security of interoperable medical devices using attack graphs. In
Proceedings of the 3rd international conference on High confidence
networked systems, pages 31–40. ACM, 2014.

[13] C.-W. Ten, C.-C. Liu, and M. Govindarasu. Vulnerability assessment
of cybersecurity for scada systems using attack trees. In Power
Engineering Society General Meeting, 2007. IEEE, pages 1–8. IEEE,
2007.

[14] R. Vigo, F. Nielson, and H. Nielson. Automated generation of attack
trees. In Computer Security Foundations Symposium (CSF), 2014 IEEE
27th, pages 337–350, 2014.

[15] F. Xie, T. Lu, X. Guo, J. Liu, Y. Peng, and Y. Gao. Security analysis
on cyber-physical system using attack tree. In Intelligent Information
Hiding and Multimedia Signal Processing, 2013 Ninth International
Conference on, pages 429–432. IEEE, 2013.

