Requirement Engineering for Functional Alarm
System for Interoperable Medical Devices

Krishna K. Venkatasubramanian', Eugene Y. Vasserman?, Vasiliki Sfyrla®,
Oleg Sokolsky?, and Insup Lee*

! Worcester Polytechnic Institute, kven@wpi .edu
2 Kansas State University, eyv@ksu.edu
3 Unaffiliated, vasssiliki@gmail.com
4 University of Pennsylvania, {sokolsky,lee}@cis.upenn.edu

Abstract. This paper addresses the problem of high-assurance opera-
tion for medical cyber-physical systems built from interoperable medical
devices. Such systems are different from most cyber-physical systems
due to their “plug-and-play” nature: they are assembled as needed at a
patient’s bedside according to a specification that captures the clinical
scenario and required device types. We need to ensure that such a sys-
tem is assembled correctly and operates according to its specification. In
this regard, we aim to develop an alarm system that would signal inter-
operability failures. We study how plug-and-play interoperable medical
devices and systems can fail by means of hazard analysis that identify
hazardous situations that are unique to interoperable systems. The re-
quirements for the alarm system are formulated as the need to detect
these hazardous situations. We instantiate the alarm requirement gen-
eration process through a case-study involving an interoperable medical
device setup for airway-laser surgery.

1 Introduction

A recently emerging vision of dynamically composable and Interoperable Med-
ical Device Systems (IMDS) will allow information integration from multiple
clinical sources in a context-sensitive way to guide patient care and prevent
common critical mistakes [I2]. Various agencies and standards bodies, including
the U.S. Food and Drug Administration, have signaled that the future of medi-
cal technology lies in medical device interoperability [12]. High-assurance device
interoperability will be a critical requirement in realizing this vision.

IMDS, while a subset of cyber-physical systems in general, are unique in that
they are constructed as needed, i.e., on demand. An interoperability failure can
lead to devastating consequences for the patients being treated e.g., sudden loss
of closed-loop control. These systems are mission-critical — literally a matter
of life and death — therefore we must ensure they are functioning (availability)
and functioning properly (correctness) with high assurance. Risks in medical
device interoperability arise due to its dynamic nature, meaning the potential
issues are emergent properties of the entire system and therefore impossible to

fully control ahead of time, so we need to monitor the “health” and proper
functionality of the system itself at run-time. This means continually verifying
that design-time assumptions hold at run-time and ensuring that faults, either
natural or malicious, are detected.

IMDS typically consists of two main entitiy classes: medical devices involved
in the treatment of patients, and software controller applications (referred to
as apps) that coordinate these devices. An illustrative example is airway-laser
surgery, in which a surgeon uses a laser to investigate or fix issues with the
patient’s trachea or nearby organs. This carries the potential danger of a fire
if the laser is active while oxygen is being delivered to the patient and the
surgeon accidentally damages the oxygen delivery tube. Whenever the laser is
being activated, a human operator must first block the air path. In a simplified
patient model, brain damage may occur if oxygen is reduced for more than
about 4.5 minutes or the blood oxygen saturation (SpO2) level drops below
40% — both of these conditions must be avoided. In traditional operating room
environments, nurses and surgeons are supposed to be aware of such potential
fire and low-oxygen problems [10].

When an IMDS for Airway-Laser-Surgery (ALS-IMD) is deployed, it needs
to ensure that interactions between constituent devices proceed according to the
specification of the clinical scenario. Otherwise, the safety requirements of the
system can be compromised, even if the controller itself is operating properly. If
problematic interactions are detected, an alarm needs to be raised. Alarms are
therefore a key component in ensuring safe operation of IMDS. Note that, these
alarms are different from the clinical alarms in that they do not signal abnormal
patient state, but rather the abnormal state of the entities that monitor and treat
the patient. We refer to these as technical alarms (rather than physiological or
clinical alarms which have to do with patient health).

In this paper, we explore the requirements to realize a robust yet flexible
alarm system for IMDS. Henceforth, we refer to such a system as the Interoper-
ability Alarm System (IAS). The goal is to reliably alert clinicians to failures of
the overall interoperability of the system. We use the term fault to mean cause(s)
of errorin the system, which may then eventually lead to loss of expected service
from the system, or failure [3]. The main challenge in developing these require-
ments is that the TAS needs to support all IMDS that can be assembled from
the available set of interoperable devices. (The full magnitude and variability of
this set may not be known at IMDS design time.) Our approach to developing
the requirements for IAS has three steps: (1) perform a hazard analysis for iden-
tifying interoperability failures within ICE, (2) identify the various faults that
individual elements in the IMDS can manifest, (3) derive a set of fault trees that
characterize how combining various faults may lead to identified hazards. Note
that we do not claim that the use of hazard analysis or fault-trees to characterize
the failures of IMDS is by itself novel. Novelty comes from applying existing and
well-understood tools to the new and unique domain of IMDS.

In this regard, we consider an TAS that is decoupled from other entities
in IMDS: although the controller app and medical devices are well-defined in

App 1 App 2 App 3

ICE Supervisor

ICE Network Controller

i i i

Medical Medical Medical
Device 1 Device 2 Device 3

Fig. 1. Simplified diagram of the ICE architecture

terms of intended use and expected behavior, they cannot reliably monitor their
own operation and trigger alarms. A key feature of the TAS is the flexibility of
connection-time (i.e., system start-time) configuration, using specifications (re-
quired devices, information flows and their parameters) supplied by deployed
apps and parameters of interoperability-compliant devices used to build the
IMDS. Stand-alone medical devices already have built-in alarms, but in the
interoperable context, augmenting device alarms with a high-level system alarm
will not only simplify medical device design but will also increase their safety.

The contributions of this work are as follows: (1) a hazard analysis based
requirements generation for TAS, and (2) a case study using the airway-laser
surgery example to some of the demonstrate the utility and expressiveness of
our approach.

2 Background

Within the realm of healthcare interoperability, much work is done at the syn-
tactic level (i.e., developing common formats for data exchange between medical
systems [I4]) in the form of standards such as 11073 [4], IHE [9] and HL7 [6].
However, we believe that realizing the full potential of IMDS needs a higher level
of interoperability. Hence we make use of the ASTM 2761 Integrated Clinical
Environment [2] standard, also known as MD PnP ICE, which aims to provide
semantic interoperability (i.e., devices not only have a common data format,
but they also understand the meaning of the data being exchanged). We adopt
the ICE standard as the primary system model for our work. Logically, the ICE
architecture is separated into three entities, which are illustrated in Figure
Supervisor (SUP): The Supervisor is responsible for executing clinical
“scenarios” also referred to as apps, from common and easily scriptable tasks
such as taking blood pressure at predefined intervals and recording the results,
to more complex procedures like medication interaction monitoring and suppres-
sion of likely false alarms. The app thus encapsulates clinical knowledge about
a particular treatment procedure that involves multiple devices. These clinical
scenarios are viewed as control algorithms running on the Supervisor.
Medical Device (MDs): Medical devices in the ICE setup can be respon-
sible for measuring the state of the patient or changing the state of the patient

through some form of stimulus (e.g., electrical, mechanical) with the express ob-
ject of causing a particular outcome (e.g., pace the heart, reduce blood glucose).

Network Controller (NC): ICE allows coordination between each medi-
cal device through the Network Controller, a sort of “medical router”. It does
not have any medical/clinical functionality itself, but facilitates communication
between the medical devices and the Supervisor, with responsibilities including
data routing, translation, and quality of service (QoS) enforcement.

In this architecture, the Supervisor and the NC are fixed, while MDs and
apps are dynamic and change based on the clinical scenario. In [I1], the authors
describe a means for each medical device to provide a model of its operation
during run-time to the app. The apps too provide a specification of their op-
eration to the Supervisor to ensure correct operation. We assume these models
and specifications are also made available at system startup to the TAS, which
can then use them to determine the presence of ICE failures. In addition the
IAS is already assumed to possess a model for the Supervisor the NC, which is
pre-supplied and does not change based on clinical scenarios. The availability
of these models and specifications make it possible for the IAS to have a global
view of the IMDS operation and therefore potentially detect failures that IMDS
cannot detect by itself.

2.1 A case for IMDS alarms

Currently, medical systems are designed and deployed as monolithic, complete
artifacts [5]. Only a small number of vertically-integrated systems permit any
deviation from the original configuration. Integrators build systems for a specific
clinical scenario out of a dedicated collection of devices, and then argue for the
safety of this system. In this case, we can craft a monitoring subsystem that
would raise alarms based on the requirements of the clinical scenario and failure
modes of the devices involved. A fixed safety argument based on hazards of the
clinical scenario can be built. A dynamically composed setup, on the other hand,
is customized (usually by the appointed clinician) for each patient for whom it is
deployed in terms of the included devices and applications that run on it, and the
monolithic system safety approach does not straightforwardly extend
to the on-demand interoperability setting, since the safety argument is no
longer tied to a particular scenario, nor are the “safe” parameters known ahead
of time. Crafting a safety argument ahead of deployment time for a system is
challenging, to say the least. However, a high-assurance alarm subsystem can
significantly simplify the task, if we can ensure that unsafe conditions reliably
trigger an alarm and a failover-to-operator (manual, non-interoperating) mode.

Stand-alone medical devices already incorporate their own alarm systems.
Indeed, alarm parameters, e.g., the concept and quantification of deviation from
“safe,” vary from patient to patient, and may even differ for the same patient for
different treatment strategies. For instance, if a patient receives blood pressure
reducing medication, “safe” / normal readings are expected to be outside a pre-
defined range — this information is known to the clinician, but potentially not to
the alarm system. Clinical logic (automatic reasoning about the condition of the

Patient Safety Compromise

ICE Initialization - Failure of displaying correct
H1 Failures H2 :=CEI Operational H3 patient state information
ailure /

Out of scope

Fig. 2. Hazard causing patient safety

patient) can be almost arbitrarily complex, with a large number of factors, from
basic patient information like height, weight, and gender, to current medications
and condition treated. ICE apps are expected to receive data about the same
patient from different sources, and perform a clinically useful function. One such
function would be monitoring patient vital signs and predicting potential prob-
lems, which would be manifested as alarms. We call these patient health alarms,
or physiological or clinical alarms. Since apps are the components responsible for
raising clinical alarms, we consider such alarms out of scope for this paper. How-
ever, apps rely on correct operation of medical devices and the underlying ICE
platform. Which faults may lead to failures depends on which apps are deployed
in the ICE instance. No single component within the system has all the relevant
information to make informed decisions regarding which faults to detect and
whether or not to raise an alarm in the event of a fault. Therefore, we focus on
technical alarms that are the result of a fault of the ICE instance — emergent
issues that arise because of the very fact that the system is interoperable and
constructed as needed from units whose functionality, clinical logic, and domain
data are limited.

3 IAS Requirements Generation

In this section we describe requirements generation for the Interoperability Alarm
System (IAS) — the technical alarm system for IMDS. The TAS is responsible
for detecting any interoperability failures within IMDS itself; in our case this
is ICE. A well-designed ICE infrastructure should itself be capable of detecting
technical issues with its operation, similar to exception handling in software en-
gineering: if a medical device does not start when it is supposed to, or if the
Supervisor crashes, such technical faults can be detected within ICE by e.g., the
Supervisor or the device itself, respectively. Therefore the technical issues of ICE
under the purview of IAS are those that cannot be reliably detected within ICE.
Our main challenge is to determine when self-checks within ICE are insufficient.

Let us further consider our ongoing example of airway-laser surgery. A de-
vice, e.g., the pulse oximeter, sending valid but incorrect values is out of scope

for the moment, since this does not constitute an interoperability problem. On
other hand, sending values at a wrong rate is an interoperability problem that,
presumably, can be detected by the ICE component receiving the values. How-
ever, because of the on-demand nature of ICE, the receiver may not know what
the right rate is (since we may use different oximeters in different instantiations).
Thus, whoever checks the value has to match the expected rate against the rate
provided by the specific device used in a particular instance. If the check is
performed incorrectly, we are in a situation that requires detection by IAS.

Our general approach to identify the (categories of) requirements for TAS
has three steps: (1) identifying the principal hazards in ICE, (2) determining the
high-level causes for these hazards, and (3) identifying the basis of the causes
in the previous step. We build a fault-tree for each of these ICE failures to
trace the origins of the fault. The output of the fault-tree analysis gives us a
set of conditions within ICE operation that can eventually lead to hazards and
failure of ICE that IAS is responsible for detecting, hence forming its
requirements. In other words, the leaf nodes of this fault-tree essentially provide
us with a category of IAS requirements.

We now present a categorization of the TAS requirements rather than list
each of them one by one, i.e., we do not attempt to provide a comprehensive list
of all possible sources of hazards within ICE. Further, IMDS hazards and the
faults leading to them are also situation-specific. The fault trees are therefore
pruned appropriately.

3.1 Hazard Analysis-based Requirements Gathering

The goal of hazard analysis is to determine, based on the operational understand-
ing of a system, the various situations which can lead to hazardous condition for
its users. In the case of ICE, hazardous conditions pertain to situations where
the interoperability capability provided by ICE is not executed or executed in-
correctly, leading to patient safety consequences. For IMDS we see that patient
safety compromise appears from a set of three main hazards in ICE (see Figure
2)): (1) Hazard H1: ICE initialization failure, which prevents the interoperabil-
ity platform from executing, leading to the patient not being able to receive its
benefits; (2) Hazard H2: ICE operational failures, which occur during the exe-
cuting of the interoperability by ICE, leading to sudden stoppage or incorrect
interoperability; (3) Hazard H3: ICE status presentation failure, which leads to
the wrong patient and ICE status being conveyed (e.g., through patient displays
connected to ICE) to the caregiver and the patient, potentially leading to incor-
rect diagnosis and treatment. We consider H3 to be out of scope because if an
app is displaying the wrong information (but acting on correct information, as
the hazard specifies) there is a problem only if a clinician observes the informa-
tion and acts on it. If the display did not exist, everything would be operating
normally. We now describe the causes of in-scope hazards H1 and H2 in detail:
Initialization Failures: H1 focuses on problems within ICE during the initial-
ization of the interoperability setup around the patient. These manifest them-
selves when the various medical devices are integrated with ICE and the apps

H1: ICE Initialization Failure

App Initialization Aop Initial MD Initialization
Failure PP n{tla) Failure
Parameterization Failure
e Jrener.,

P Parameterization Caregiver’s Failure NC’s (MD
incorrect or detection absence)
absent error ’_ﬁ_‘ detection error

MD MD non-
Absent functional
MD Initial Parameterization
Failure
MD App’s
parameterization detection
Fault Fault

Fig. 3. Fault-tree for H1: Initialization failures

loaded onto the Supervisor within ICE and the interoperation is started. At
this stage, failures can manifest themselves due to faults at all levels of ICE
from the medical device to the Supervisor. For example, supervisory coordina-
tor (i.e., app) initialization fault can occur if the Supervisor is not able to load
the app. Similarly, the supervisor control algorithm can itself have initialization
issues where it is not parameterized correctly or at all. Figure |3| illustrates the
fault-tree for the initialization failures.

Operational Failures: H2 considers operational failures within the ICE, which
happen after a successful (failure-less) initialization. The causes of H2 can again
manifest themselves anywhere within ICE. An example of an operational failure
is when a medical device sends corrupted data and the Network Controller does
not check the CRC of the data received, failing to detect corruption. If either
of the entities worked correctly, the fault would be detected within ICE and
TAS would not be engaged. Other examples include: (1) a mismatch between
actual medical device operation and operation expected by the app; (2) loss
of device data or commands from the app due to insufficient bandwidth in the
Network Controller; (3) software fault in the app crashing the Supervisor. Figure
illustrates the fault-tree for the operational failures. Some of the intermediate
events appear more than once in the fault tree. For such events, we have expanded
only one of the many occurrences into its constituent basic events. For the rest,
we simply use a dashed line to denote that they should be expanded further.

H2: ICE Operational Failure

A |

App-MD-NC
Failure

MD-NC
Failure

MD OP/
Act
Faults

App-MD Failure

AND
MD OP/ NC MD and NC
Act Internal Interface
Faults Faults Faults
T T App Internal
1 I 1 Faults
NC MD and NC MD
MD 0P/ an App Internal | MD oP/
Internal Interface Interface
Act Faults Faults Act Faults
Faults Faults Faults

Patient
Model
Faults

Resource
Exhaustion

Untimely/
Erroneous/
Absence
Measurem
ent

Untimely/
Erroneous/
Absence

Actuation

Failure to
maintain
QoS

Failure to
Prioritize
flow

Bugs and
Execution
Faults

Failure/
Incorrect
data
reception

Failure/
Incorrect
data
forwarding

Fig. 4. Fault-tree for H2: Operational failures

As we can see from the fault-trees generated for the initialization and op-
erational failures, failures of ICE that fall under the purview of IAS are those
where one or more of the four components in the ICE fails to follow the pre-
scribed protocol while at the same time the ICE entities fail to detect that the
protocol is not being followed. For example, a medical device fault in measuring
the patient’s physiology is not by itself sufficient to involve the TAS. That is, IAS
will be involved only if a fault in the data source ICE entity is accompanied by a
fault in the data sink ICE entity (the entity ultimately receiving and processing
the data). In general, there appear to be four types of failure scenarios in ICE
operation that cannot be managed by ICE without the TAS:

— Single-Entity Failures: Certain entities within ICE are crucial for its op-
eration, namely the Supervisor. Faults within the Supervisor and its control
algorithms are typically difficult to detect within ICE. Certain faults asso-
ciated with the processing of patient data cannot be detected by any entity
within ICE and therefore fall under the purview of TAS.

Multi-Entity Failures: During the flow of data or commands from apps
to the medical device and vice-versa, a component el in ICE faults along
with another component e2, where e2 is responsible for detecting the fault of
el. For example, el is a medical device which fails to collect a measurement
in response to an Supervisor’s command, and e2 is the Supervisor, which
does not detect this despite not receiving data from the medical device in

the reverse direction.

— Entity-Link Failures: During the flow of data or commands between two
adjacent components el and e2 that share a communication link, the link
faults (i.e., alters, delays, or loses data) and the receiver entity does not
detect the fault. For example, the link between the Supervisor and the NC is
noisy and results in the altering of the command being sent by the controller
(to the medical device), and the NC does not detect this alteration as it does
not correctly verify the CRC.

— Combination Failures: Finally, combination failures occur when more
than one of the above three failures manifest simultaneously. As each of these
instances are failures not detectable within ICE, a combination of them will
also be undetectable, and would therefore fall under the purview of TAS.

Given the dynamic nature of ICE, many of the requirements may be difficult
to design for without making IAS arbitrarily complex. At this stage, however,
our goal is not to prune for detectability but to identify potential ICE failure
categories that can only be detected by a decoupled entity, such as IAS.

As note of caution, we stress that our goal is to design an alarm system
that is as generic and reusable as possible, and one that works for a variety of
apps and interoperability situations. Hence, we keep the description of our three
hazards as general as possible. It is therefore likely that some of the constituent
hazards may not apply fully in specific IMDS instances. For example, consider
a cardiac activity monitoring IMDS that collates sensing devices such electro-
cardiogram, photoplethysmogram, and continuous blood pressure to develop a
complete picture of the patient’s cardiac process. This IMDS will not harm the
patient in any way through incorrect actuation. Therefore several sub-trees of
H1 and H2 will not be relevant for this particular IMDS. The alarm system can
be configured to ignore any faults reported from such sub-trees at run-time.

4 Case Study

In this section, we present a case study that demonstrates the application of our
requirement generation approach to developing the requirements for an alarm
system for IMDS. Given the space constraints, we do not provide an extensive
fault-tree for the case study, but cover the four types of failures presented earlier.
The IMDS chosen for the purposes of this case study is one that facilitates the
clinical scenario of safe airway-laser surgery (ALS-IMD) in the context of ICE by
providing a safety interlock between the ventilator and the laser. The ventilator
supplies oxygen to an intubated patient, and needs to be stopped when the
laser is used to make an opening in or near the patient’s throat. This has the
potential danger of a fire if the laser is activated while high oxygen concentration
is supplied by the ventilator. Whenever the laser is being activated, a human
operator must block the air path from the oxygen concentrate while ensuring
that the patient does not remain without oxygen for too long [10]. In traditional
operating room environments, clinicians are supposed to be aware of potential
fire and patient hypoxia problems. IMDS for safe airway-laser surgery must meet
the following two safety invariants (requirements): (1) R1: The supply of oxygen

Data and control tlow

/ Supervisor

%

| Clinical
l App
L 2 v
Pulmonary Supervisory
Laser Controller
Controller Controller
- A ~

* e T o

ICE N Network Controller

¥ X

4
SPO2 Ventilator (VENT) Laser

Fig. 5. Airway-laser surgery interoperable medical device system model

from the ventilator must be blocked during the use of the laser to prevent surgical
fire; (2) R2: The oxygen supply must be resumed within 4.5 minutes or if the
patient’s SpO2 level falls below 40% [10].

In an ICE context, where safety properties are enforced not by dedicated
hardware but by an app running on the supervisor, failure of ICE components
to function correctly may jeopardize safety. In order to mitigate such situations,
we need an external entity like TAS that can look at the IMDS holistically and
detect failures with its operation. The rest of the section is divided into two
parts: we begin with a description of the system model ASL-IMD, then discuss
how an IAS would be used in an ICE-based implementation of ASL-IMD.

4.1 ALS-IMD System Model

The system model for interoperable medical device system aiding in the safe ex-
ecution of airway-laser surgery is illustrated in Figure[5| There are three medical
devices in this interoperability setup — laser, SpO2, and ventilator. Individual
medical devices may have their own internal logic to detect conditions
that affect patient safety. An ASL app is responsible for making sure that
the two safety constraints are satisfied at all times. As in [I0], the app makes use
of two dedicated “low-level” controllers: a pulmonary controller for the SpO2
and the ventilator, and a therapeutic controller for the laser system. The pul-
monary controller maintains a pulmonary model and generates a contingency
plan for the ventilator and the laser to follow. These contingency plans provide
hard limits for when the laser should stop and the ventilator switched back on
in order to ensure R1 and R2 are never violated, providing patient safety even in
the presence of network failures. The lower-level controllers are thus closed-loop
themselves and will attempt to keep the patient safe even if all else fails. Each
of low-level controllers is coordinated by a “high-level” controller within the app

Operational Failures

Both Laser and Vent

Sp02 Measurement

@ Reporting
Laser does not Loss of network during
switch OFF when when Ventilator executing
demanded incorrect contingency plan
LEGEND

S1: Sp0O2 does not send any O2 measurements
S2: Sp0O2 modifies O2 measurements (from real value)
before transmission

N1: NC does not perform CRC check on data received
N2: NC stops operation (data is not shuttled between
supervisor and the devices)

Incorrect
Contingency plan
execution @ Vent

C1: App uses old SpO2 data when no new data is received
C2: App does not alarm when no SpO2 data is received at appropriate intervals
C3: App doesn't/incorrectly evaluate(s) R2 thresholds

V1: Vent receives command to stop, sends ACK, stop does not happens
V2: Ventilator executes contingency plan incorrectly
V3: Vent receives detectably incorrect contingency plan

but does not check it properly

Multi-Entity failure
Single-Entity failure
Entity-Link failure
L1: Laser does not send PAE, when caregiver desires to stop it
L2: Laser executes contingency plan incorrectly
L3: Vent receives detectably incorrect contingency plan

but does not check it properly

Combination failure

0000

Fig. 6. Airway-laser surgery interoperable operational failures

which determines when to start the laser and stop the ventilator and vice-versa
depending upon the needs for the caregiver during the surgery.

Now that we know how ASL-IMD works, we turn to the interoperability
hazards of an ICE-based implementation of ASL-IMD. To this end, we build a
fault-tree that describes the various failures that can occur with ALS-IMD which
cannot be detected by entities in ICE and so require an external/decoupled
entity. Figure [6] captures operational faults that can occur within the ALS-IMD
system and the resulting failures that arise from these individual faults. The leaf
nodes represent individual faults in some entity within ICE, and these faults are
combined to create operational failure scenarios.

We now consider these faults from the perspective of the characterization
given in Section [3] We can see that all of the identified faults fall within the four
categories of faults that form the requirements for the IAS. The shading of nodes
in Figure [0] illustrates the categorization of the identified failures. This lets us
conclude that an TAS module, built to satisfy these requirements, would success-
fully raise alarms to notify operators about failures in the ALS-IMD system. As
mentioned before, the goal is not to be comprehensive with the fault-trees but
to demonstrate how they are generated.

The TAS system will require various fault detection modules that detect the
problems specified in the leaf nodes in our fault trees. Many of these detection
modules may be IMDS-specific and need to be loaded at run-time when the
IMDS is assembled. Our goal with TAS is to build a modular or parametric

alarm system that can incorporate detection modules into a larger whole. An
important consideration in integrating these detection modules into IAS is the
resultant complexity of the alarm system, which can make any problems with
IAS itself difficult to detect. One might even decide to leave out the detection
modules for certain faults, thus rendering them undetectable, as long as they do
not necessarily cause immediate harm to the patient.

5 Related Work

Integrated Modular Avionics: In aviation, Integrated Modular Avionics
(IMA) describes an architecture fairly similar to ICE. The major difference,
however, is that components are assembled and integrated beforehand, while, to
extend the aviation analogy to ICE, we would be swapping equipment in and
out while the aircraft is in flight. IMA describes a distributed real time net-
work of computing platforms known as modules. Modules are networked to each
other, to devices of the aircraft such as sensors/actuators and the environment.
An IMA module is a layered architecture, described in the avionics standard
ARINC 653 [I3]. This standard is based on the concept of partitions. Each par-
tition is an area separated from the operating system for scheduling and memory
space purposes. Each partition contains an application of the avionics software.
Applications have access to common services of the operating system. The op-
erating system interacts with the supporting hardware via a hardware interface
layer. Applications can have different levels of criticality and are executed inde-
pendently. IMA consists of a health monitoring system for fault detection and
reporting of application software, OS and hardware failures.

The role of apps in ICE, rather than performing a specific functionality, is to
determine the medical devices used in each case and orchestrate their executions.
ICE Supervisor is compared to an IMA platform which encapsulates several apps
and interacts with the network. Concerning the IMA health monitoring system, it
provides fault detection only of the IMA platform. Contrary to IAS that detects
faults of the whole architecture, IMA health monitoring systems do not detect
faults coming from the network, devices of the aircraft and the environment.

IEC 60601-2-8: The IEC 60601-1-8 standard [7] defines alarms for med-
ical equipment, their associated problems, and provides some suggestions for
risk mitigation strategies. Primary considerations are alarm source identifica-
tion, distractions caused by alarms, and false positive alarms. The system being
monitored is best described as a distributed system with associated components,
so TAS fulfills the role of a technical alarm that ensures, as required by 60601-1-8,
that the failure of a component of a distributed system must generate a technical
alarm condition. Note that TAS is not a primary alarm — these are generated
by devices and/or clinical applications. IAS is a secondary alarm which detects
component failure when those components themselves either do not detect it or
are acting maliciously. The IEC standard was not meant for use in the pres-
ence of malicious devices/actors. TAS is compliant with 60601-1-8, and is a step
toward making the system being monitored compliant with 60601-1-8, assum-

ing adequate documentation, and an external log, provided by the interoperable
system being monitored, for alarm recording.

TEC 80001-2-5: The IEC 80001-2-5 standard [8] deals with distributed alarm
systems (which are only briefly mentioned in IEC 60601-1-8). These systems
handle multiple medical devices simultaneously, and their functionality may not
be housed within one physical location, and therefore subject to additional safety
issues such as transmission delays and lost messages within the medical IT-
network. Types of systems include guaranteed delivery, guaranteed delivery with
confirmation, and “informational” systems which do not guarantee delivery. Only
those systems offering guaranteed delivery with confirmation are sufficiently safe
to be used for primary notification. Once again, it is important to recall that
IAS is not a primary alarm. Further, defining the means of communicating IAS-
generated alarms are beyond the scope and space constraints of this work.

ICE Logging: In [I], the authors discuss the design of a data logging system
for an Integrated Clinical Environment (ICE). The data logger is contained in
the ICE Network Controller and logs data from all medical devices. Log data
is useful for debugging network interactions, clinical event analysis, analyzing
patient outcomes and developing advanced clinical algorithms. The data logger
provides options to allow user decide the granularity of details of the logs, a
suitable clock logic to establish causal ordering between events in cases where
real-time clock is not available, special formats for interpreting data between
connected devices, security options for ensuring trustworthiness of the log and
methodologies for clinical log and debugging playback of the log data. Note that
this is both a technical and a clinical data logger.

6 Conclusion

In this work, we develop requirements for a technical Interoperability Alarm Sys-
tem (IAS) for dynamically composable on-demand IMDS. As part of our work
we define the scope of TAS as distinct from a physiological or clinical alarm. We
use the ICE architecture as the basis of our IMDS for alarm requirements gen-
eration. Our approach is to use hazard analysis and fault-trees to systematically
and comprehensively categorize the various faults within the ICE architecture
which the TAS would be responsible for detecting. The faults thus identified
have an important common characteristic — they are all problems that cannot
be detected from within ICE by the various ICE entities because they are a
result of the simultaneous faults in more than one ICE entity. This work can be
generalized to other cyber-physical systems, but is particularly important (and
indeed difficult) in the medical system space, where systems are expected to
be assembled as needed, with no dedicated integrator or integration testing of a
particular system configuration. While the described alarm system cannot detect
all failures emergent from interoperability (failures which would not be possible
in a non-interoperable system), it significantly increases our assurance that an
interoperable medical system will function as intended, and that operators will
be notified when it deviates from expected behavior.

As part of the future work, we plan to design the TAS architecture including
the required monitors and the alarm logic blocks, develop the specification lan-
guage and associated vocabulary for event descriptions, and implement IAS as
part of an existing ICE implementation.

Acknowledgments

This work was partially funded by NIH grant 1U01EB012470 and NSF grants
CNS 1224007, CNS 1239543, and CNS 1253930.

References

1. D. Arney, S. Weininger, S. F. Whitehead, and J. M. Goldman. Supporting medical
device adverse event analysis in an interoperable clinical environment: Design of a
data logging and playback system. In ICBO, 2011.

2. ASTM 2761: Medical devices and medical systems — essential safety requirements
for equipment comprising the patient-centric integrated clinical environment (ICE),
2013.

3. A. Avizienis, J. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy
of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing, 1(1), 2004.

4. M. Clarke, D. Bogia, K. Hassing, L. Steubesand, T. Chan, and D. Ayyagari. De-
veloping a standard for personal health devices based on 11073. In EMBS, 2007.

5. J. Hatcliff, A. King, I. Lee, A. Macdonald, A. Fernando, M. Robkin, E. Vasserman,
S. Weininger, and J. M. Goldman. Rationale and architecture principles for medical
application platforms. In ICCPS, 2012.

6. Health Level Seven International. http://www.hl7.org/.

7. IEC. Medical electrical equipment — Part 1-8: General requirements for basic safety
and essential performance — Collateral Standard: General requirements, tests and
guidance for alarm systems in medical electrical equipment and medical electrical
systems, 2008.

8. IEC. Application of risk management for IT-networks incorporating medical de-
vices — Part 2-5: Application guidance — Guidance for distributed alarm systems,
2014.

9. Integrating the healthcare enterprise. http://www.ihe.net/|

10. W. Kang, P. Wu, M. Rahmaniheris, L. Sha, R. Berlin, and J. Goldman. Towards
organ-centric compositional development of safe networked supervisory medical
systems. In CBMS, 2013.

11. A. King, D. Arney, I. Lee, O. Sokolsky, J. Hatcliff, and S. Procter. Prototyping
closed loop physiologic control with the medical device coordination framework.
In SEHC, 2010.

12. K. Lesh, S. Weininger, J. Goldman, B. Wilson, and G. Himes. Medical device
interoperability — assessing the environment. In HCMDSS-MDPnP, 2007.

13. P. J. Prisaznuk. ARINC 653 role in integrated modular avionics (IMA). In DASC,
2008.

14. A. Tolk, S. Diallo, and C. Turnitsa. Applying the levels of conceptual interoper-
ability model in support of integratability, interoperability, and composability for
system-of-systems engineering. Journal of Systemics, Cybernetics and Informatics,
5(5), 2007.

http://www.hl7.org/
http://www.ihe.net/

	Requirement Engineering for Functional Alarm System for Interoperable Medical Devices

