
TrustForge: Flexible Access Control for
Collaborative Crowd-Sourced Environment

Jian Chang, Peter Gebhard, Andreas Haeberlen, Zack Ives,
Insup Lee and Oleg Sokolsky

{jianchan, pgeb, ahae, zives, lee, sokolsky}@cis.upenn.edu
Department of Computer and Information Science

University of Pennsylvania, Philadelphia, PA, 19104

Krishna K. Venkatasubramanian
kven@wpi.edu

Department of Computer Science
Worcester Polytechnic Institute

Worcester, MA, 01609

Abstract—Observing the success of the open source software
movement, the Adaptive Vehicle Make (AVM) is a program run
by the Defense Advanced Project Agency (DARPA) with the goal
of applying crowd-sourced and component-based engineering
to the design of military vehicles. In this paper, we present a
credentialing system called TrustForge, which enables effective
and flexible access control for the AVM crowd-sourced repository.

Credentialing systems are essential in crowdsourcing to ensure
quality, since it is potentially open to contributions made by
anyone. The open source software community has developed
elaborate manual approaches of managing its contributor com-
munity, which are often very labor-intensive and inefficient.
Our aim with TrustForge is to improve the automation of
the credentialing and access control process in the context of
component-based systems, where users contribute components at
various levels of abstraction. TrustForge takes a hybrid approach
that combines trust policy and reputation to address this problem.
In TrustForge, a policy language is used to specify the access
control rules for users in the system to contribute components.
In addition, reputation values computed for users based on the
quality of their past component contributions are used to tune
the static policies to enable flexibility and adaptiveness.

The contributions of this work are as follows: (1) the design of
TrustForge – an effective and flexible access control mechanism
that combines policy and reputation approaches; (2) the iden-
tification of heuristics for component quality measurement and
a novel reputation computation algorithm for evaluating user
trustworthiness; (3) a data model based on provenance graphs
that allows efficient repository information storage and retrieve.
We have implemented TrustForge system and integrate it with the
VehicleFORGE repository system to support the operation of the
AVM challenge program. The evaluation results based on real-
world deployment and systematic simulation demonstrate that
TrustForge can effectively discern the trustworthiness of users
within the crowd-sourced system.

I. INTRODUCTION

Flexible manufacturing and component-based design has the
potential to revolutionize the way we build next-generation
cyber-electro-mechanical systems. The use of components can
improve outcomes and reduce costs of designing and build-
ing complex systems. Further, such component-based system
designs can be crowd-sourced, where scores of participants
collaborate to achieve a common goal. This is the vision of
the Adaptive Vehicle Make (AVM), a program run by Defense

This work is supported in part by the Defense Advanced Research Projects
Agency AVM program under Contract No. HR0011-11-C-0096 and ONR
MURI N00014-07-1-0907. The views expressed are those of the TrustForge
team and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

Advanced Project Agency (DARPA) with the goal of applying
crowd-sourced, components-based engineering to the design
of military vehicles. The success of crowd-sourced software
platforms such as Linux, Firefox, and Apache that adopt a
similar methodology have paved the way for migrating the
basic approach to military systems.

In this paper, we present TrustForge, an effective and
flexible access control mechanism for crowd-sourced systems.
TrustForge serves as part of VehicleFORGE, a large repository
that stores the various component contributions and user activ-
ities for the AVM program. The repository provides TrustForge
with metadata on users activity and components information,
which is used to evaluate the trustworthiness of users for
making access control decisions. Due to the sensitive nature
of the content stored in the VehicleFORGE repository, the
requirement of making effective access control decisions is
more demanding than in other open-source platforms. This is
because: (1) the identity of the participants may not be directly
known to the project management; (2) the strictness of access
control needs to be flexible depending upon the criticality of
the project; and (3) the large scale of the enterprise regarding
the number of participants and projects and their components.

Traditional policy-based trust management approaches rely
on credentials that are assigned to participants by trusted
authorities. Such approaches rely on cryptography and give
precise guarantees that only participants with the right cre-
dential can gain access to the repository. Today’s crowd-
sourced software platforms follow such policy-based trust
management, where the credentialing is done manually1. On
the other end of the spectrum are reputation-based approaches
that are based on feedbacks (i.e., prior interaction experience)
between the participants in the collaborative environment. In
such approaches, the trust decision is made based on the
history of interactions instead of being predetermined by the
authority, which is more much dynamic and adaptive than
policy-based approaches. With TrustForge, we are taking a
hybrid approach for access control by incorporating constraints
on user reputation in the access control policy. Reputation
becomes one element in the array of user attributes. Examples
of others attributes may be the citizenship status, the length
of relevant experience, etc..

1It is often slow and time-consuming, which in turn becomes a considerable
barrier of entry.



In order to maintain reputation values, TrustForge period-
ically recomputes user reputations based on the history of
user activities. In order to protect the reputation scores, TF
is designed to compute reputation based on the objective
information, rather than on subjective opinions of other users.
Since we are primarily concerned with the quality of the
components that a user contributed to the repository, the
reputation of the user is primarily determined based on the
reputation of his/her submitted components. The most objec-
tive assessment of component quality is through testing such as
running simulation or other analysis method. However, testing
must be performed by trusted users, who are by necessity a
minority of users. In a large repository, one can only expect
a small fraction of components to be tested with sufficient
confidence. Therefore, we supplement test results with its
utility information – if component C is used by a large number
of components with high reputation, it means that contributors
of those components found C acceptable in its quality, which
gives us additional confidence in its evaluation.

The contributions of this work are as follows: (1) the design
of TrustForge – an effective and flexible access control mech-
anism that combines policy and reputation approaches; (2) the
identification of heuristics for component quality measurement
and a novel reputation computation algorithm for evaluating
user trustworthiness; (3) a data model based on provenance
graphs that allows efficient repository information storage
and retrieve. We have implemented TrustForge system and
integrated it with VehicleFORGE repository system to support
the operation of the AVM challenge program. The evaluation
results based on real-world deployment and systematic simula-
tion demonstrate that TrustForge can effectively discern users
trustworthiness within the crowd-sourced system. Even though
this work was done in the context of the AVM program, we
will keep our discussion more general. The TrustForge archi-
tecture can potentially be used for crowdsourcing applications,
as long as the underlying repository provides the necessary
inputs it requires to operate.

The paper is organized as follows: Section II presents the
related work. Section III presents the problem statement and
our principal design goals for TustForge. Section IV presents
the TrustForge system in detail including the policy engine, the
reputation function design, and the metadata model. Section
V then presents performance analysis results for evaluation.
In Section VI, we conclude the paper.

II. RELATED WORK

To the best of our knowledge, our work is one of the first
that focuses on understanding access control automation in
an open-source and collaborative code repository by adopting
a quantitative methodology. A survey on the trustworthiness
of open-source software was conducted in [1], in which the
authors identify the reasons and motivations for companies to
adopt or reject open-sourced software. The definition of trust
in their context is more narrow than in our paper: [1] focuses
only on software quality and trustworthiness, whereas we also
focus on the trustworthiness of software developers. A few
research efforts have identified effective practices adopted in
the open-source software community for building high-quality
and trustworthiness software as presented in [2], [3], and

[4]. The key difference between TrustForge and the previous
systems is that TrustForge enables a quantitative measurement
of the trustworthiness of the contributors and their components
in a collaborative environment.

Another domain of active research that is closely related
to our work is on the quantitative measurement of software
quality. This topic has attracted a lot of attention from the
software engineering community since the very beginning of
software and software development [5]. A lot of efforts has
been spent on the precise definition of software quality, and on
developing concrete quality metrics [6]. The current industry
standard on software quality is ISO/IEC 9126 [7]. A compar-
ison study has been conduct in [8], which compares various
quality models including ISO 9126, ISO 15504 and describes
a design of a more systematic model for assessing software
efficiency and effectiveness. In [9], the authors propose a
quantitative measurement technique of software architecture
quality by combining the COSMIC full function points and
ISO 9126 quality standards. A case-study is presented in [10],
which use real-world data to illustrate the practice of ISO 9000
quality guideline in the software development process. In [11],
the authors presented one of the earliest works that establishes
a framework in the analysis of the characteristics of software
quality. The authors also claim that paying close attention
to characteristics of software quality can lead to significant
savings in software life-cycle costs. Using techniques such
as granular computing, neural networks, in [12] the authors
propose an approach towards a quantitative software quality
assessment with respect to extensibility, reusability, clarity
and efficiency. In [13], the author present an overview of
quantitative analysis techniques for software quality and their
applicability during the software development life cycle. The
paper also highlights how these techniques can be used for
managing and controlling the quality of software. Applying
existing quality metrics, a measurement study was conducted
over 100+ open-source projects and the results are reported
in [14]. Although none of these work directly address the
problem of quantitative measurement of contributor trustwor-
thiness, all these efforts can be adopted into TrustForge to
build more fine-grained and application-specific metrics for
evaluating the quality and trustworthiness of the contributions.

III. PROBLEM STATEMENT AND DESIGN GOALS

The primary questions being addressed in this paper is to de-
sign an access control system for crowd-sourced, component-
based repository system that is both effective and flexible. We
would like to define clear and unambiguous trust policies to
achieve effective management of complex trust relationships
present in the crowd-sourced system, and grant only necessary
privileges to end users according to system security require-
ments. Meanwhile, we would like to incorporate the dynamic
and flexibility provided by reputation management system to
improve the liveness of the access control mechanism by
considering user contributions. Therefore, our answer to the
question above is to combine the advantages of policy-based
and reputation-based approaches. When designing such an
access control system, we would like to achieve three main
design goals:





ttB

tcB

tfB

Fig. 2. CertainLogic Fusion Operator

(t is the measured value, c is the confidence value), which en-
codes the reputation value computed based on direct feedback.
Meanwhile, the third dimension f is called default reputation,
which encodes the reputation value computed based on indirect
evidence or inference. Two operators are defined for the
reputation vector following the semantic of CertainLogic: (1)
Fusion operator – it merges several reputation vectors into
one. The detailed definition of the fusion operator is shown in
Figure 2. And (2) Expectation operator – it computes a scalar
reputation value based on the vector representation:

Expectation(A) = tA ∗ cA + (1− cA) ∗ fA

2) Design of the Reputation Function: With the under-
standing of the reputation representation, we now describe the
reputation algorithm used by TrustForge. We started by iden-
tifying all the feedback information source available, which
can be used to evaluate the trustworthiness of user and the
quality of component. For each feedback information source,
we further identity a suitable algorithm, which can be used
to infer the trustworthiness of components and users based on
the corresponding feedback type. These algorithms serve as
the basic building blocks. By properly combining them, we
design a hierarchical algorithm that generates final reputation
for both users and components as shown in Figure 3.

a) Feedback and Information Sources: In total, we
identified four independent feedback sources for reputation
computation, namely: (1) Test Evidence: the qualitative or
quantitative test results on how well components satisfy their
corresponding requirements. (2) Component Utility: the infor-
mation on how the components are used as building blocks
to compose more complex components. In our setting, the
component hierarchy is well-defined (e.g., determined by the
physical structure of the vehicle design), which is specified by
in the high-level project specifications. (3) User-Component
Provenance: the information on components and their cor-
responding contributors, which is recorded as part of the
repository log. (4) Revision History: the information on how
component and user reputation evolves over times, which is
also properly tracked by the code repository. All the feedback

information is stored in the metadata model as discussed in
Section IV-C.

b) Component Reputation Calculation: Figure 3 shows
the skeleton and information flow of our reputation algorithm
design, where nodes with the + and E symbol correspond to
the fusion and expectation operator, respectively. To compute
the measured reputation of component, we have designed two
basic building blocks:

1) Utility Graph: This building block uses the graph of
component utility relationships based on the assumption
that if a component is highly used by other components
in the system, then it is of high-quality. The t value is
computed based on PageRank algorithm [17] over the
graph of inheritance and utility links between compo-
nents. The c value is assigned based on a TrustRank
algorithm [18], which can prevent malicious users from
unfairly increasing their reputation by adding meaning-
less links in the graph.

2) Test-based: This building block is based on test evi-
dence. The idea is that by using qualitative or quan-
titative tests, one can measure how well a component
satisfies its requirements. The t value is computed based
on statistical distribution estimation of the test evidence
to get the probability of requirement satisfaction by a
component. The c value is computed based on the test
of significance of the corresponding statistical estimator.

The value computed by these two building blocks are
merged using the fusion operator to get the measured com-
ponent reputation. For computing the default reputation of
component, we have designed three building blocks:

1) Utility Graph: This building block uses the same com-
ponent utility graph, but focuses on the out-going links
instead of in-coming ones as in the computation of
measured component reputation. The idea here is that
if a component reuses design from other high-quality
component, then this component is more likely to be of
high quality, and vice versa. To compute this building
block, we fetch the measured reputation of all the
components from which one component uses.

2) Revision History: This building block uses the revision
history information of components. The assumption is
that if a component is high-quality in the past revisions,
it will still be high-quality in the future, and vice versa.
To compute this dimension, we fetch its past measured
reputation values.

3) Provenance (User-Component): This building block
uses the relationship of components and their corre-
sponding contributors. The idea is that high-quality
components are contributed by trustworthy users, and
vice versa. To compute this dimension of reputation for a
component, TrustForge fetches the measured reputation
of all its contributors.

TrustForge merges the reputation value computed by these
three building blocks using the fusion operator. However, we
cannot directly use the resulting (fused) (t,c,f) tuple for the
default reputation as in our model it is represented as a single
value. Therefore we computed the expected value from the
fused (t,c,f) tuple, as shown with the operator E in Figure 3.



Krishna Kumar Venkatasubramanian






Fig. 5. User Reputation Snapshot

component contributed by the same user. The average variance
is 0.02, which is a very small value. Both metrics indicate that
the behavior pattern of user is stable over time, which provides
strong justification to the usage of reputation as an effective
trust quantification metric.

B. Simulation-based Evaluation

In order to systematically test the efficacy of the TrustForge
policy engine and the reputation computation and fine tune
its performance we built a VehicleFORGE simulator. The
purpose of the simulator is to mimic the basic capabilities
of the VehicleFORGE repository in terms of providing the
TrustForge with information updates on the users and their
component contribution, specifying policies and performing
access control. This approach allows us to evaluate and tweak
our system by covering the configuration space. Consequently,
the principal capabilities of the simulator are: (1) the ability to
provide updates regarding components and their interconnec-
tions; (2) the ability to add test results to components; and (3)
the ability to simulate various user types with varying degrees
of maliciousness.

1) Simulator Design: The simulator operates on a trace,
which specifies properties of each user involved in the simula-
tion, and records interactions between users and the repository:
introduction and revision of components, and introduction
of test resuts. A generated trace can be stored and used
to evaluate different policies and reputation algorithm with
respect to the same scenario. A trace is generated for a
particular component type hierarchy, which is an acyclic graph
specifying, for a given component, the necessary types of its
subcomponents. A type hierarchy can be used to generate
multiple traces with different kinds of users, as described
below. The simulator processes entries in the trace one by one.
Whenever a component of type ct is to be added by a user U ,
the simulator selects subcomponents of the right types from the
repository, creates a ground truth quality value between 0 and
1 for the component based on parameters of U . The simulator
then enters an instance of ct into the repository, linking it to the
selected subcomponents. Trace generation algorithm ensures
that subcomponents of ct will be present in the repository

User Type Adding High-Quality 
Components

Choosing Basic 
Component

Good 100% Best

Purely Malicious 0% Worst or Own

Malicious Provider 0% Random

Disguised Malicious 50%-100% Random

Fig. 6. User Behavior Models in TrustForge Simulator

whenever an instance of ct is to be created. Whenever a test
is to be added for a component C, the simulator randomly
generates a test outcome based on the ground-truth quality of
the component.

2) User Behavior Model: The simulator supports various
types of user behavior patterns, shown in Figure 6. Each
user has two properties: one specifies the expected quality
of components added by the user; the other one describes
how the user chooses subcomponents for the components it
creates. A good (i.e., trustworthy) user contributes high-quality
components all the time, while choosing subcomponents with
high reputation. A purely malicious user contributes bad
components and chooses subcomponents with poor reputa-
tion to boost their perceived utility. Similarly, a malicious
provider never contributes high-quality components and ran-
domly chooses subcomponents for its composite components.
Finally, a disguised malicious user only adds high-quality
components between 50%-100% of the time to disguise its
maliciousness. We use the normal distribution to determine the
probability of adding high-quality components in a particular
transaction for the disguised malicious users.

C. Simulation-based Evaluation Results

To exercise the simulator and the TrustForge infrastructure
discussed in previous sections, we conduct experiments to
evaluate the effectiveness of TrustForge by extensively cov-
ering the configuration space. To setup the experiments, we
use the simulator to generate a component type hierarchy
with 50 component-type nodes and 100 “component type to
component type” links. For each experiment, we ran it over
at least 1000+ revision iterations. And for every 10 revision
updates, we re-compute component and user reputation based
on the reputation algorithm discussed in Section IV-B. This
configuration is fixed across the series of experiments we
conducted.

On the user side, we set up a community of 20 users. The
reason for choosing a relatively small number of users in the
experiment is that we would like to accelerate the reputation
evolving process. Since we set the reputation update interval
to be 10 revisions, we want to make sure that the number
of revisions per user is relatively large. Further, we vary the
percentage of different user types among user community
(detailed user behavior models discussed in Section V-B2).
For disguised malicious users, we set their probability of
contributing good components to be 50% in most of the
experiments, unless otherwise noted. At most 50% of good
users are given curator privilege to submit test results, and
we also vary the size of this trusted tester set in some of the
experiments. Tests are generated by such trusted testers for



0.35

0.45

0.55

0.65

0.75

0.85

0.95

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801

U
se

r 
R

e
p

u
ta

tio
n

Reputation Computation Iteration

Reputation Trend w/ 70% Good User

Good User Pure Malicious Malicious Provider Disguised Malicious

0.7

0.75

0.8

0.85

0.9

0.95

1

1 21 41 61 81 101

U
se

r 
R

e
p

u
ta

tio
n

Reputation Computation Iteration

Reputation Trend w/ 40% Good User

Good User Pure Malicious

Malicious Provider Disguised Malicious

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 21 41 61 81 101

U
se

r 
R

e
p

u
ta

tio
n

Reputation Computation Iteration

Reputation Trend w/ 10% Good User

Good User Pure Malicious

Malicious Provider Disguised Malicious

Fig. 7. Overall Reputation Trends

components that are randomly picked from the repository. We
take this approach as its absence presents an easy attack vector
for malicious users, who can introduce poor components
within the system by giving them very high test scores. Test
scores are therefore allowed from users who can be trusted to
be accurate in their assessment of components. The measured
trust value of test results is informed by the ground truth
quality of the corresponding components with ±10% error.
The confidence value of test results is uniformly set to be
95%.

1) General Reputation Trends: We first demonstrate the
overall trend of user reputation computed by TrustForge. We
vary the percentage of good users in the user community
from 70%, 40% to 10%. Meanwhile, the corresponding per-
centage of total number of malicious users was increased
10%, 20%, and 30%. We run simulation experiments for
each configurations over 8000 revision iterations (i.e., 800
reputation computations). In Figure 7, we plot the average
reputation trends for different user types over time. For clearer
presentation purpose, we plot the full trend for the 70% good
user configuration. For the other two configurations, we only
plot the first 1000 revisions (i.e., 100 reputation computations),
which is good enough to capture the characteristics that we
are interested in. Using the experiments, we observe that:

• Convergence and Sensitivity: The reputation curves
quickly converge to a stable range for both good and
malicious users after 20-30 reputation computation iter-
ations. This shows that the sensitivity of the reputation

function is good enough to capture user’s behavior.
• Effectiveness: Further, we can observe a clear separation

between different user behavior models. That is: (a) Good
users often have much higher reputation than malicious
ones; even when the good users are an absolute minority
among the users. (b) Among the three malicious user
types, the purely malicious users often get the worst
reputation; both malicious providers and disguised ma-
licious users get better reputation as they demonstrate
more trustworthy behaviors than purely malicious ones.
These results demonstrate that the reputation algorithm
adopted in TrustForge is effective in discerning good and
various types of malicious users.

2) Average Separation: With the overview of the repu-
tation trends in mind, we further conducted experiments to
investigate the reputation differences between good users and
each of the three types of malicious users. In this regard,
we created three user communities with good users and one
type of malicious users – (good, purely malicious), (good,
malicious provider), and (good, disguised malicious). For each
user community, we vary the percentage of good users from
10%, 25%, 40%, 55%, 70%, 85%, 95%, and record the
average reputation of good users and the corresponding type
of malicious users from the 200th to 1000th revision iteration
(i.e., when the reputation value of user has converged to a
rather stable range).

As shown in Figure 8, the reputation margin between
good users and malicious users are wide enough for most



0

0.2

0.4

0.6

0.8

1
[M: 10 G: 90]

[M: 25 G: 75]

[M: 40 G: 60]

[M: 55 G: 45][M: 70 G: 30]

[M: 85 G: 15]

[M: 95 G: 5]

Average Good User Reputation

Average Purely Malicious User Reputation

0
0.2
0.4
0.6
0.8

1
[M: 10 G: 90]

[M: 25 G: 75]

[M: 40 G: 60]

[M: 55 G: 45][M: 70 G: 30]

[M: 85 G: 15]

[M: 95 G: 5]

Average Good User 
Reputation

Average Malicious 
Provider Reputation

0
0.2
0.4
0.6
0.8

1
[M: 10 G: 90]

[M: 25 G: 75]

[M: 40 G: 60]

[M: 55 G: 45][M: 70 G: 30]

[M: 85 G: 15]

[M: 95 G: 5]
Average Good User 
Reputation

Average Disguised 
Malicious User 
Reputation

Fig. 8. Average Reputation Margin Between Good Users and Different types of Malicious Users. (Top) Margin between Good Users and Purely Malicious
Users. (Bottom-left) Margin between Good Users and Malicious Provider Users. (Bottom-right) Margin between Good Users and Disguised Malicious Users.

of the scenario. Although the margin become narrow as the
percentage of good user decreases within the community, we
can still maintain meaningful margins even when the good
users only 30% of the total number of users. Further, although
the reputation of malicious users can be very close to that of
the good users in some scenarios (especially when malicious
users is more than 85%), the average reputation of good user
is still higher than malicious ones. These results suggest that
the reputation value computed by TrustForge has good average
performance in discerning different type of users.

3) Minimal Separation: After a description of the average-
case performance of the reputation mechanism, we switch our
focus to the worst-case scenario. That is, we want to under-
stand to what extent malicious users can game the system. As
we see in previous experiments, the reputation margin between
disguised malicious users and good users is the closest, since
half of the time such malicious users demonstrate good behav-
iors. Therefore, we conduct further experiments by increasing
the probability for disguised malicious users to exhibit good
behavior from 50%, to 60%, 70% or even 90% (the percentage
of good users in the community is set to be 70% in these
experiments). Furthermore, we measure the margin between
the disguised user who has the highest reputation value and
the good user who has the lowest reputation value.

We illustrate the trends of this minimal reputation margin
between good users and disguised malicious users in Figure
9. As we can see, as the disguised users exhibit more and
more good behavior, essentially the observed behavior pat-
tern of good users and disguised malicious users becomes
very similar to each other. The reputation margin become
smaller and it takes a longer time for the reputation algorithm

-0.16

-0.11

-0.06

-0.01

0.04

0.09

0.14

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

R
e
p
u
ta

tio
n
 M

a
rg

in

Reputation Computation Iteration

60% Good Behavior 70% Good Behavior

80% Good Behavior 90% Good Behavior

Fig. 9. Minimal Reputation Margin Between Good Users and Disguised
Malicious Users with Various Probability of Exhibiting Good Behavior

to discern the difference. Overall, the reputation margin is
positive for most cases, even when the disguised malicious
users mainly exhibits good behavior. Currently, we are still
actively working on improving this margin using improved
trust calculation functions such as those presented in [22].
This along with investigating advance persistent threats where
adversaries behave correctly for long durations of time and
then suddenly switch to malicious behavior are important
future research directions. In summary, the robustness of the
TrustForge reputation mechanism is largely satisfactory in
meeting our design goal under the attack models discussed
in Section IV-B3.

4) Reputation under Limited Tests: We further conducted
experiments to investigate the impact of the amount of avail-
able tests on the effectiveness of our reputation mechanism.
In this experiments, we set up a user community with 70%



-0.17

-0.12

-0.07

-0.02

0.03

0.08

0.13

0.18

0.23

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

R
e
p
u
ta

tio
n
 M

a
rg

in

Reputation Computation Iteration

10% of Good Users Contribute Tests 20% of Good Users Contribute Tests

30% of Good Users Contribute Tests

Fig. 10. Minimal Reputation Margin Between Good Users and Purely
Malicious Users with Various Amount of Tests

of good users and 30% of purely malicious users. We then
vary the size of the tester set, who are good users granted with
curate privilege to submit test results, from 10%, 20%, to 30%
of the total good users in the community (ı.e., in contrast to
50% in our previous experiments). Furthermore, we measure
the reputation margin between the purely malicious user who
has the highest reputation value and the good user who has the
lowest reputation value. By giving only limited test results to
components, our reputation algorithm gets much less raw data
that is used as the basis for the aggregate and computation of
user reputation.

We illustrate the trends of this minimal reputation margin
with limited test result in Figure 10. As we can see, after a
few (about 5 - 20) initial iterations, the minimal separation
between good user and malicious users is maintained. With
less test results, the margin decreases, but is still wide enough
for making correct access control decision. The results shown
here suggests that our reputation mechanism can also work
effectively with limited amount of test information. This result
is also encouraging when one considers the application of
TrustForge design to other open-source repository environ-
ments.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an access control system called
TrustForge that enables effective and flexible credentialing
for crowd-sourced component-based systems. In this regard,
TrustForge automates the credentialing and access control
process. It take a hybrid policy and reputation-based approach
to address this problem. The policy language is used to
specify the credentials for users in the system to contribute
components. The reputation scores are then used to tune
the credentials. Our implementation of TrustForge and its
evaluation revealed its capabilities in terms of discerning users
with various levels of trust. The next step in this regard is
conduct long-term evaluation for our real-world deployment
and fine-tune the reputation, data storage and policy engine
further.

REFERENCES

[1] V. del Bianco, L. Lavazza, S. Morasca, and D. Taibi, “A survey on open
source software trustworthiness,” IEEE Softw., vol. 28, no. 5, pp. 67–75,
Sep. 2011. [Online]. Available: http://dx.doi.org/10.1109/MS.2011.93

[2] M. J. Gallivan, “Striking a balance between trust and control in a
virtual organization: a content analysis of open source software case
studies,” Information Systems Journal, vol. 11, no. 4, pp. 277–304, 2001.
[Online]. Available: http://dx.doi.org/10.1046/j.1365-2575.2001.00108.x

[3] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of
open source software development: Apache and mozilla,” ACM Trans.
Softw. Eng. Methodol., vol. 11, no. 3, pp. 309–346, Jul. 2002. [Online].
Available: http://doi.acm.org/10.1145/567793.567795

[4] L. Zhao and S. Elbaum, “A survey on quality related activities in open
source,” SIGSOFT Softw. Eng. Notes, vol. 25, no. 3, pp. 54–57, May
2000. [Online]. Available: http://doi.acm.org/10.1145/505863.505878

[5] R. J. Rubey and R. D. Hartwick, “Quantitative measurement of program
quality,” in Proceedings of the 1968 23rd ACM national conference,
ser. ACM ’68. New York, NY, USA: ACM, 1968, pp. 671–677.
[Online]. Available: http://doi.acm.org/10.1145/800186.810631

[6] K. Akingbehin, “A quantitative supplement to the definition of software
quality,” in Software Engineering Research, Management and Applica-
tions, 2005. Third ACIS International Conference on, aug. 2005, pp. 348
– 352.

[7] “ISO/IEC 9126 software engineering - product quality.” [Online].
Available: http://www.iso.org/iso/home/store/catalogue ics/catalogue
detail ics.htm?csnumber=35733

[8] M. Ortega, M. Prez, and T. Rojas, “Construction of a systemic quality
model for evaluating a software product,” Software Quality Journal,
vol. 11, pp. 219–242, 2003, 10.1023/A:1025166710988. [Online].
Available: http://dx.doi.org/10.1023/A:1025166710988

[9] G. Zayaraz and P. Thambidurai, “Quantitative measurement of software
architectural qualities through cosmic ffp,” in India Conference, 2006
Annual IEEE, sept. 2006, pp. 1 –4.

[10] A. Tiwari and A. Tandon, “Shaping software quality-the quantitative
way,” in Software Testing, Reliability and Quality Assurance, 1994.
Conference Proceedings., First International Conference on, dec 1994,
pp. 84 –94.

[11] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of
software quality,” in Proceedings of the 2nd international conference
on Software engineering, ser. ICSE ’76. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1976, pp. 592–605. [Online]. Available:
http://dl.acm.org/citation.cfm?id=800253.807736

[12] M. Reformat, W. Pedrycz, and N. Pizzi, “Software quality analysis with
the use of computational intelligence,” in Fuzzy Systems, 2002. FUZZ-
IEEE’02. Proceedings of the 2002 IEEE International Conference on,
vol. 2, 2002, pp. 1156 –1161.

[13] M. A. Talib, A. Khelifi, A. Abran, and O. Ormandjieva, “Techniques for
quantitative analysis of software quality throughout the sdlc: The swebok
guide coverage,” in Software Engineering Research, Management and
Applications (SERA), 2010 Eighth ACIS International Conference on,
may 2010, pp. 321 –328.

[14] H. Barkmann, R. Lincke, and W. Lowe, “Quantitative evaluation of
software quality metrics in open-source projects,” in Advanced Infor-
mation Networking and Applications Workshops, 2009. WAINA ’09.
International Conference on, may 2009, pp. 1067 –1072.

[15] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust manage-
ment,” in Proceedings of the 1996 IEEE Conference of Security and
Privacy, Oakland, CA, 1996.

[16] S. Ries, S. M. Habib, M. Mühlhäuser, and V. Varadharajan, “Cer-
tainlogic: A logic for modeling trust and uncertainty (short paper),”
in In Proceedings of the 4th International Conference on Trust and
Trustworthy Computing (TRUST 2011). Springer, Jun 2011.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” 1999.

[18] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen, “Combating web
spam with trustrank,” in Proceedings of the Thirtieth international
conference on Very large data bases - Volume 30, ser. VLDB
’04. VLDB Endowment, 2004, pp. 576–587. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1316689.1316740

[19] G. Karvounarakis and Z. G. Ives, “Querying data provenance,” in Proc.
SIGMOD, 2010.

[20] Z. G. Ives, A. Haeberlen, T. Feng, and W. Gatterbauer, “Querying
provenance for ranking and recommending,” in Proc. TaPP, 2012.

[21] “Ready, set, design DARPA’s first FANG challenge begins today.”
[Online]. Available: http://www.darpa.mil/NewsEvents/Releases/2013/
01/14a.aspx

[22] M. Nojoumian and T. C. Lethbridge, “A new approach for the trust
calculation in social networks,” in 3rd Int. Conf. on E-Business (ICE-
B), 2006, pp. 257–264.


