
Criticality Aware Access Control Model for Pervasive Applications
�

S. K. S. Gupta, T. Mukherjee and K. Venkatasubramanian
Dept. of Computer Science and Engineering

Arizona State University
Tempe, AZ 85287

http://impact.asu.edu

Abstract
Access control policies define the rules for accessing sys-

tem resources. Traditionally, these are designed to take a
reactive view for providing access, based on explicit user
request. This methodology may not be sufficient in the case
of critical events (emergencies) where automatic and timely
access to resources may be required to facilitate corrective
actions. This paper introduces the novel concept of criti-
cality which measures the level of responsiveness for taking
such actions. The paper further incorporates criticality in
an access control framework for facilitating the manage-
ment of critical situations. Specific properties and require-
ments for such criticality aware access control are identified
and a sample model is provided along with its verification.

1 Introduction
An important aspect of Pervasive Computing is to de-

velop intelligent environments which allow inhabitants to
interact seamlessly with a smart, information-rich space [1].
The ability of such spaces to monitor and interact with its
internal elements, makes them ideal candidates for hackers
and tech-criminals to exploit. Access control is therefore
an essential component of smart spaces to prevent unautho-
rized access to the information available in them.

Under normal circumstances, systems provide services
in response to routine events. Access control in such cir-
cumstances can follow standard pre-defined set of policies,
such as Role-Based Access Control (RBAC) [2]. In case of
system emergencies, however, the access control require-
ments change radically. For example in a smart home en-
vironment, the basement door may be usually kept locked
to prevent access to the children in the house. However, in
case of emergencies, such as tornado warning, the basement
should be automatically unlocked to allow unhindered ac-
cess. Further, to be effective, the unlocking of basement has
�
Supported in part by MediServe Information Systems, Consortium for

Embedded Systems and National Science Foundation grant ANI-0196156

to be done within a certain duration, after the warning has
been received. We refer to such system emergencies (e.g.
tornado) as criticality and the causal events (e.g. tornado
warning) as critical events.

This paper addresses access control for pervasive com-
puting systems to aid them in handling critical events. The
idea is to proactively monitor the system contextual infor-
mation, to detect the occurrence of critical events, and to
automatically provide alternate access privileges, appropri-
ate for facilitating mitigative actions (e.g. unlocking the
basement). This is unlike many of the traditional context
aware access control policies (e.g. Context-Aware RBAC
(CA-RBAC) model [3]), which by nature are reactive, and
observe/evaluate the system context only on explicit access
control requests from subjects. We contend that such reac-
tive approaches are slower and less flexible compared to our
proactive model.

The contribution of this paper is to identify the require-
ments and properties for criticality aware access policies
and provide a sample model to realize it. Such critical-
ity awareness enables the system to plan for emergencies
and provides flexibility to prepare for appropriate mitigative
procedures. We next describe the notion of criticality (Sec-
tion 2) followed by the sample access control specification
(Section 4) along with its verification (Section 5).

2 Criticality

Criticality is a measure of the required level of re-
sponsiveness for taking corrective actions to control the ef-
fects of critical events. To quantify this attribute, we de-
fine an application dependent parameter called Window-of-
Opportunity (

���
), which is the maximum delay that can

possibly be allowed to take corrective actions after the oc-
currence of a critical event 1. In the tornado example, this
value has been determined to be five minutes after the warn-
ing [4]. Similar values exist for other domains as well such

1 ��� can be determined in many ways including empirical analysis and
system policies

Start

Is access

request made ?

No

Has Critical Event occurred?

 AND

Has
W
o
NOT
expired?

AND

T
EU
NOT
expired ?

Determine criticality level (using

contexts)

No

Yes
Implement the privileges of

the current access policies

Record all system activities

for accountability

Yes

Change current access policies

to CAAP.

Change system to CAAP-mode.

Record change to CAAP-mode

Is
system in

CAAP-mode ?

Reset access policies for normal

system state

Reset system to normal state

No

Yes

No

Proactive Access Control

Figure 1. Criticality Handling in CAAC

as the golden hour for stroke patients. Standard access con-
trol policies, do not provide the necessary flexibility to take
such timely actions, against the critical events. In the event
of a tornado warning, the aware home, working with stan-
dard access control policies, will not unlock the basement
without explicit request jeopardizing safety in certain cases.
Therefore, it may be necessary for the system to enforce a
new set of access policies to handle such criticalities.

We refer to such alternate access policies as Criticality-
Aware Access Policies (CAAP) and during their enforce-
ment, the system is said to be in the CAAP-mode as op-
posed to the normal mode (Figure 1 shows the control flow
for this transition of the system from its normal mode to
the CAAP-mode). In the tornado scenario, the smart home,
in the CAAP-mode, unlocks the basement for easy access.
However, changing access policies, during critical events,
may introduce security concerns. These stem from the fact
that the new set of policies may provide higher privileges to
access resources. Further, if these higher privileges are pro-
vided for an extended duration, they may lead to misuse.
Therefore, we contend that the duration of the CAAP-mode
should be limited and end at a time, which is the minimum
of: 1) the end of

���
, 2) the time instant when criticality

is controlled (�
	���
), and 3) the time instant when all nec-
essary actions to mitigate the criticality, have been taken
(�
	��) 2.

In summary, managing system criticality has three main
components: 1) ability to proactively monitor system con-

2Limiting the CAAP-mode to ���
� is required because, once all pos-
sible corrective actions have been taken, continual provision of the CAAP
is unnecessary, irrespective of the outcome

Access Control
 Meta-Data (ACM)

Roles
 Privileges
Subjects

Criticality Management Unit

(
CMU
)

Accountability

Management Unit

(
AMU
)

Dynamic Context

Management Unit

(
DCMU
)

Context Gathering

Platform (
CGP
)

Access Control Policy Management

(
ACPM
)

Role Management Unit

 (
RMU
)

Figure 2. CAAC Model

text, 2) enforcement of an alternate set of rules for criticality
management, and 3) limiting the duration of such alternate
enforcements. Additionally we envision that the critical-
ity aware access control should possess the following four
properties: Responsiveness: The system should immedi-
ately respond to any critical event. Correctness: A change
in policies should only be in response to a critical event.
Liveness: The duration of policy changes should be finite
and last only as long as needed. Non-Repudiability: All
system activities performed in the CAAP-mode should be
monitored for ensuring accountability.

In this paper, we present a sample mechanism for real-
izing criticality aware access control policies called Crit-
icality Aware Access Control (CAAC). It has the ability
to handle both critical and non-critical situations. The en-
closed section in Figure 1 represents the proactive control
required for criticality management. The CAAC model con-
tinually determines the criticality level of the system, and
on observing a critical event, changes the access policies to
CAAP and enters the CAAP-mode. If there is no critical-
ity, then the system checks whether it is in the CAAP-mode,
in which case, it returns the system to its normal state and
enforces the appropriate policies when access is requested.

3 System Model

Criticality aware access extends the traditional context
based access by incorporating proactive monitoring for crit-
ical events. To demonstrate criticality management, we
present a centralized model for CAAC (Figure 2) which is
designed to handle only one critical event at a time. Here,
the ACM provides the meta-data abstracting the dependen-
cies between the subjects, their roles and the corresponding
privileges. The CGP collects raw context data while DCMU
processes it and provides higher level contextual informa-
tion from it. The context is further filtered by the CMU to
handle criticality. Based on the information from CMU and
ACM, the RMU then enforces appropriate access privileges.

Figure 3 shows the architecture for the CMU. The CI
proactively monitors the system context information and
detects the occurrence of criticality. The CLD compo-
nent uses pre-defined window-of-opportunity values, de-

Criticality Level

Determination Unit

(
CLD
)

Criticality Notification

Unit (
CNU
)

Non-critical

Context

Handler

(
NCH
)

Access Control

Meta-data

 Provider

(
ACMP
)

Context Interpreter

 (
CI
)

Figure 3. Criticality Management Unit (CMU)

pending upon the type of criticality detected3. The CNU
then notifies other system components about the detected
type and level of criticality and moves the system to the
CAAP-mode4. The policies associated with the CAAP-
mode are determined (by CNU) using the meta-data pro-
vided by ACMP which is an interface for ACM. NCH, on
the other hand, enforces standard access control policies.

AMU records all events in the system for accountability,
while ACPM uses the underlying infrastructure to imple-
ment the access control and administrative policies.

4 Access Control Specifications
Access control specifications is presented in terms of

model and policies. In our model we assume that all the
system components are time-synchronized and there is a re-
liable context gathering platform which provides accurate
data and is not vulnerable to attacks by adversaries. We
have two types of system policies: Access Control Policies
and Administrative Policies. We present our access control
model and associated policies below.����� ������� �!�#"%$'&�(*)+$�,.-/$102� ,

The principal model builds upon the context aware role
based access control model given in [5] and extends it to
incorporate criticality. Our system supports two types of
roles: system role (3�46574) and space role (384:97;7<6=). The for-
mer is assigned to subjects when they become part of a sys-
tem. For example a person joining a hospital as a surgeon
may get a system-role of a doctor. The latter is derived from
the subject’s system role, and the current contextual infor-
mation and is used for access control.

In our model, access to resources is given based on ac-
cess control lists (ACLs) maintained for each resource in
the system. The ACL is a list of all possible space roles
that subjects can be assigned in the system and their respec-
tive privileges. To provide access, a subject’s system role
and context information is mapped on to a space role us-
ing an application dependent function (we refer to this map-
ping function as >@?�ABADCFE
G6ADHDIJC). The obtained space role is

3The value of Window-of-Opportunity may not be static and may vary
with mitigative actions (a stroke patient’s condition progressively stabilizes
as she is treated thereby increasing the Window- of-Opportunity

4It implements the logic given in Figure 1

then used to index the resource’s ACL to retrieve the subject
privileges. During a critical event, the system promotes the
space role of certain subjects (as part of the CAAP-mode)
to provide them with higher privileges.���JK �L����� �!�#"M$�&�(*)+$',ONP$',:Q:� QR� �

Access Control Policies define the rules for controlling
the access to different resources within the system. All the
decisions take into account the roles, context and criticality
for making the access control decisions. In the following
specification the symbols S , AB465T4 and AB4R9T;U<6= denote the set
of resources in the system, the system role (A 465T4WV 3 4X574),
and the space role (A 4:97;7<6=YV 3 4R9T;U<6=) respectively.

Access Control Predicate: In this predicate (Z.[8\), when
a subject ? makes a request to a resource] for a specific
method ^ (thus making ADCF_B?`CD]TGUab?�cd]ecf^hg true), it presents
a set of credentials ([). The credentials are of following
types: G6iBj�CBH!k'ab?�cfAB46574@g which ensures that ? has the system-
role AF465T4 , and CFl*j HBAFGf]+a:]*cm^ng which ensures that] provides
the access privileges ^ . Given these credentials, the predi-
cate validates the access control by first computing the sub-
ject’s space-role (using >U?�ABADCFE
G6ABHDIRC function). It then uses
the j�ADHB^nHBGXCTADHDIRC function to decide if the role needs to be
promoted. Role promotion happens only if the request is
made in the [8ZYZY\poq^nHDr+C . The access is provided only if
^ matches the space-role returned by j�ADHB^MHBGXCFADHDIJC in the
ZO[8s of] 5. This predicate extends the access control predi-
cate in [5], to include j�ADHB^nHBGXCFABHDIRC function which handles
criticality by executing the CAAP.

ACP:t@umvdw*uyxXz�{|w~}:xU}J�.�+�Yz��m�!ud�@�+{�w~}:tm���y�m���.�W��{�x��8���+��um�U�!�dtyzJx@{�x@}R�.��`{ �Dt@�m�.�dzbuft@�y��u7{|�6w*tdt@um�ez�t@�y��u7{�t ���d� }R�X�d�+zbuf�DzJ�6}Rwe�6}R�.�
�.�'�'� �
Promote and Demote Role: The function j�ABHB^nHBGXCFADHDIJC
(Alg 1) is used to promote the space-role of a subject with
respect to a resource in case of an access request for con-
trolling a critical event. When invoked, this function checks
the level of criticality 6 using the function [.AF��G6�6>U��Ib��G6i . If
access is requested in a normal state ([.AF��G6�6>U��Ib��G6i
aRg����), it
simply returns AB4R9T;U<6= . If a critical event has occurred, it does
the following: 1) computes the window-of-opportunity of
criticality using the function >7�+IR>@?`IJ�+GXCFG6�:^nC which takes the
level of criticality as input, 2) implements CAAP, by com-
puting the promoted space-role A 9T�!97;7<6= , based on the level
of criticality using >7�+IR>@?`IJ�+GXCFABHDIRC , and 3) updates a Pro-
moted Role Table (PRT) with the following tuple � subject’s
id ? , promoted role A 97�!9T;U<6= , start time of role-promotion
>@? AFADCFE
G6����^nC+a:g , stop time of role-promotion

� �D
. The

5The assumption here is that the privileges associated with a higher role
encompasses all the lower privileges.

6Level of Criticality (�'�) is an application specific positive number,
e.g. if the critical event is a tornado occurrence, then the CL could be its
intensity

PRT is used to account for all subjects whose roles have
been promoted. The presence of such a table allows for
easy auditing and role accountability.

Alg 1:PROMOTE ROLE:
Function Name : �!ty�d�.�mzbumt@�y��u , Return Value : Promoted Role
Attributes : w8� Set of Subjects, td�J¡y¢d£�¤���¥��J¡y¢d£�¤
1. if (Criticality() ¦§ 0)
2. ��� § �X¨T���6we��¨Uzbumz�©��Ou7{���ty©�z�©��X¨7��©|z��*{��R�
/* Compute new space-role */
3. t ¡UªT¡d¢y£�¤ § �X¨T���6w*��¨Uzbumt@�d��uU{���ty©|z�©��X¨T�«©�z��!{���}6we�
/* Update PRT */
4. ¬ ¥ � § ¬ ¥ �®­8¯ {�w°}Rt ¡@ªT¡y¢d£�¤ }:�6w!tyt@uf�+z � ©��Ou7{��6} ��� �:±
5. return t ¡UªT¡d¢y£�¤
6. else
7. return tm�J¡y¢d£�¤
8. end if

We also define another function called r+CF^MHBGXCFADHDIJC (Alg
2) which demotes the space-role for a promoted subject
when the critical event has been controlled. If the current
time returned by >@?�ABADCFE
G6����^MC�a:g is within

� �
it updates

the � stop time of the role-promotion

element of the cor-
responding PRT entry to the current time.

Alg 2: DEMOTE ROLE:
Function Name: ² um�O�dzbumty�y��u , Return Value : Demoted Role
Attributes: w�� Set of Subjects
1. for (each resource) do
/* Demote role */
2. �6w*tdt@um�ez�t@�y��u7{�td���y�@}R�X�d�+zbuf�DzJ� , where z��m�!ud�@�+{�w°}Rtd���d�y�
/* Update PRT */
3. ³ ©�� ¬ ¥ � , if �6w!tyt@um�ez � ©��.uU{��`´ ��� such that ��� �O©
4. ¬ ¥ � § ¬ ¥ �%µP¯ {�w~}:t �J¡y¢d£�¤ }Rz ��¶|¢y·f¶ } ��� �R±
5. ¬ ¥ � § ¬ ¥ �¸­.¯ {|w~}Jt �J¡d¢y£:¤ }Rz ��¶|¢@·X¶ }��6w!tyt@uf�+z � ©��Ou7{��R�R±
6. end for

Notification: Criticality management is mainly handled us-
ing the E�HBG6�Xk i°[.AB�:G6�6>U��I function (Alg 3). This function pri-
marily implements the logical flow of criticality handling
presented in Figure 1. It has following five aspects: 1) To
continuously monitor the system for critical events (using
[.AF��G6�6>U��Ib��G6i which returns 0 when there is no criticality)
and start the CAAP when a critical event occurs. 2) Iden-
tifying the appropriate subjects who can deal with a criti-
cal event using the function k ��E�r�¹�]TCFA . 3) Notifying the
subjects identified to handle criticality. The E�HBG6�Xk i func-
tion is used for this purpose. It takes as input the result of
k �:E�r~¹�]FCFA , the current criticality level and the associated�L�

. If the notification has already been sent to the sub-
ject for the same criticality level, it returns false otherwise
it returns true. 4) Promoting the roles of the subjects (us-
ing j�ADHB^nHBGXCTADHDIRC) to provide them necessary privileges, on
resources, for handling the critical event. 5) Demoting the
subject roles when the effects of critical events are handled
or go beyond control, using the r+CT^nHBGXCFADHDIJC function and
returning the system to normal state. Specifications for the
functions [.AB��G6��>7�+IJ��G6i , k �:E�r~¹�]FCFA , E�HBG6�Xk i , >U��IJ>@?`IJ�+GXCFADHDIJC ,
>U��IJ>@?`IJ�+GXCFG6��^MC , and]7GX�+ABG G6��^nCTA are application dependent
and therefore are abstracted out.

Alg 3: NOTIFICATION:
Function Name : �+�dz�©b�B�F��ty©�z�©��X¨7�
1. while (TRUE)
2. while (Criticality() = 0)
3. if (xfzb¨Uzbu § �'��� ¬ - �O� ² u)
/* Revert to the normal state, when criticality is over (�~� º`»)*/
4. xfzb¨Uzbu § �+�dty�O¨T�
5. ² um�O�dzbumty�y��uU{|we�
6. end if
7. end while
8. if (xfzb¨Uzbu § �'��� ¬ - �O� ² u)
9. if (timer ��� expired)
/* Revert to the normal state, when window of opportunity expires */
10. xfzb¨Uzbu § ���mty�.¨7�
11. �Xw!tytyum�+z�ty�y��uU{|t ���y� }:�f�m�+zbum�DzJ� , ³ resource
12. else
13 if (all actions taken)
/* Revert to the normal state, when all actions have been taken (� ���) */
14. ² um�O�dzbuft@�y��u7{�w+�
15. xXzb¨7zbu § ���dty�O¨7�
16. end if
17. end if
18. end if
/* Criticality is observed, enter the CAAP-mode */
19. xfzb¨Uzbu § �'��� ¬ - �O� ² u
20. �'� § ��ty©�z�©��f¨7�«©�z��*{��
21. � � § �X¨7���6w*��¨Uzbumz�©|�.uU{��'� �
22. if ¼ (�+�dz�©b�B�*{��B©�� ²T½ xfumtF{��6}6�'��} � � �)
23. xfzb¨Utyz z�©|�.uftF{ ��� �
24. �Dt@�d�O�dzbumty�y��uU{��6w!tyt@uf�+z�t@�d��uU{|t ���y� }��X�d�ezbum�DzJ��}Jw+� , ³ resource
25. end if
26.end while

���b¾ �L0À¿ÁQ:&2Q:�D(*)+Â
(eQRÃ��ÄNP$',�QR� Q:���
For adding/removing subjects, roles and managing the

smart spaces within the system, we use the policies given in
[5]. We however incorporate an additional policy for main-
taining accountability (Alg 4) within the system. The func-
tion basically, returns the details of the PRT and a Current-
Role-Table (CRT table is used to store the current space role
of a user) for a particular user. The presence of role ac-
countability allows the administrator (S'i°]FZYre^) to find out
which roles were promoted, when they were promoted and
for what resources.

Alg 4: ACCOUNTABILITY:
Function Name : ty�y��um¨T�X�X�dw!�+zb¨7Å�©��«©�z��
Attributes : w�� Set of Subjects, w ¢ � Set of Subject
1. if (z��d�!ud�y��{�w ¢ }:�°�Fxm� ² �.�`���)
/* Access PRT */
2. ³ ¨Æ� ¬ ¥ � }R©b�Bw��O¨ obtain the tuple {�w~}:td�J¡d¢y£:¤7}Jzb��¶|¢@·X¶6}:z ¤:ÇTÈ �
/* Access CRT */
3. ³ ¨Æ�8��¥ � }R©b�Bw��8¨ obtain the tuple {�w~}Rt ���d� }Jt �b¡y¢y£:¤ �
4. end if

����� ÉËÊ1Â�¿�ÌÀ,:�
We now illustrate how the CNU specification can be

enforced in the aware-home example given in Section 1.
When a tornado warning is issued, the aware-home’s CI
detects this and calculates the level of criticality using the
function [.AF��G6�6>U��Ib��G6i . This information is then used, by
the CLD, to calculate the associated

�Í�
(5 minutes) using

>U��IJ>@?`IJ�+GXCFG6��^MC . The CNU then uses the criticality level and
associated

�Í�
to automate the transition to the CAAP-mode

(unlock basement) using the functions E�HBG6�Xk i°[.AB�:G6�6>U��I and
j�ADHB^MHBGXCFADHDIJC . Once the criticality level has receded (tor-
nado has passed), the CNU executes reCF^nHBGXCTADHDIRC to switch
back to the standard access mode (ensure everyone is out of
the basement & lock it). In the standard mode, all access
requests are evaluated by the NCH using ACP predicate.

5 Verification
In this section we present semi-formal proofs for veri-

fying the policies specified above. We assume all access
control policies execute correctly, all the administrative en-
tities are trusted and the policies and system log cannot be
accessed in an unauthorized manner. The following proofs
verify the four properties of criticality awareness.
Theorem 5.1 Correctness: The system can enter the
CAAP-mode if and only if there is a critical event.

Proof �Xk part: If there is a criticality, function
j�ADHB^MHBGXCFADHDIJC is called (in line 24 of Alg 3) and line 3 of
j�ADHB^MHBGXCFADHDIJC (Alg 1) will be executed. HBE�IJi¸oÎ�Xk part: If
the role of a subject is promoted, it means that line 4 of
j�ADHB^MHBGXCFADHDIJC has been reached earlier and this can happen
only in case of a critical event. As j�ABHB^nHBGXCFADHDIJC implements
CAAP, the result follows.

Theorem 5.2 Liveness: For a single critical event, a sub-
ject’s role is promoted for a maximum of

� �
time (i.e

^M�+l�aJ�

�Ï
Ï
Ð1g1� � �
).

Proof From Theorem 5.1 and the assumption that roles are
not promoted in normal system state, it follows that when
a subject’s role is promoted, the

�Í�
timer has been started

for the critical event for which the role has been promoted.
The promoted role of a subject is demoted in the follow-
ing cases: 1) Line 11 of Alg 3: If the

� �
expires. Here

�`
�Ï
Ï
ÐÎ� � �
. 2) Line 5 of Alg 3: If there is no criticality,

but the system state is in the CAAP-mode. This can only
happen if a critical event has been controlled before its

� �
(� 	���
 � ���

). Therefore, �
�Ï
Ï
Ð �Ñ� 	���
 . 3) Line 14
of Alg 3: If the

�Í�
has not expired, but all actions for crit-

ical event handling have been taken i.e. � 	�� � ���
. Then

�
�Ï
Ï
Ð �Ò� 	�� . Therefore for a single critical event, the
subject’s role is promoted for a maximum of

�#�
.

Theorem 5.3 Responsiveness: When a critical event oc-
curs - 1) the subject is immediately notified, 2) if required
the subject’s access privileges are elevated (role promo-
tion), and 3) any role promotion is active until either the
criticality is controlled or it cannot be controlled any more.

Proof The proofs of the claims above are as follows: 1)
When there is a criticality, the subjects are notified in line
22 of Alg 3. 2) If the subject being notified already has re-
quired privileges, its role is not promoted as the call for the

function >U��IJ>@?`IJ�+GXCFADHDIJC in line 3 of Alg 1 does not return
elevated space-role (by definition). Otherwise, the function
>U��IJ>@?`IJ�+GXCFADHDIJC returns an elevated space-role based on the
level of criticality, thus promoting the subject’s role. 3)
From Theorem 5.1 and the assumption that roles are not
promoted in normal state, we know that role promotion is
done when there is a critical event and from Theorem 5.2
it follows that role is promoted until either the criticality is
controlled or

���
expires.

Theorem 5.4 Non-Repudiation: Malicious use of pro-
moted role after the occurrence of a critical event is non-
repudiable and limited to a finite amount of time.

Proof Line 4 in Alg 1 and line 5 Alg 2 ensure that when-
ever a role is promoted it is recorded in PRT along with the
appropriate start and end times enforcing non-repudiation
of any malicious activity by a subject due to role promo-
tion. As we assume that all the access control policies exe-
cute correctly, the PRT table is accurately updated. Further,
as the PRT is assumed to be secured from any unauthorized
access, and the administrator is a trusted entity, line 2 of Alg
4 can be used for ensuring non-repudiation. From Theorem
5.1 and 5.2, it follows that the maximum time the role can
be promoted, in the CAAP-mode, is

� �
, thereby limiting

potential malicious activity to a finite amount of time.

6 Conclusions
In this paper we presented a novel access control frame-

work for smart spaces, called criticality aware access con-
trol, which helps mitigate system emergencies incorporat-
ing a novel concept of criticality. We further presented a
sample criticality aware access control model (CAAC) to
illustrate the working of our framework and provided semi-
formal proofs to verify its properties. Future work includes
its formal verification and prototype development.

Acknowledgments
We are grateful to John Quintero, Guofeng Deng, and the

anonymous reviewers for their comments which helped im-
prove the paper, and, Bruce and Zach Mortensen of MediS-
erve Information Systems for their encouragement.

References
[1] F. Adelstein, S. K. S. Gupta, G. G. Richard and L. Schwiebert “Fun-

damentals of Mobile and Pervasive Computing”. McGraw Hill, 2005

[2] R. Sandhu, E. Coyne, H. Feinstein and C. Youman. “Role Based Ac-
cess Control Models”. In IEEE Computer, Feb, 1996.pp 38-47

[3] A. Kumar, N. Karnik and G. Chafle. “Context Sensitivity in Role-
based Access Control”. In ACM SIGOPS OS Review 36(3), July, 2002

[4] Working Group on Natural Disaster Information Systems “Effective
Disaster Warning” November, 2000

[5] G. Sampemane, P. Naldurg and R. Campbell. “Access control for Ac-
tive Spaces”. In Proc. of ACSAC, 2002

