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Abstract. Electrocardiogram (ECG) sensor is one of the most com-
monly available and medically important sensors in a Body Sensor Net-
work (BSN). Compromise of the ECG sensor can have severe conse-
quences for the user as it monitors the user’s cardiac process. In this
paper, we propose an approach called SIgnal Feature-correlation-based
Testing (SIFT) which is used to detect temporal alteration of ECG sen-
sors in a BSN. The novelty of SIFT lies in the fact that it does not require
redundant ECG sensors nor the subject’s historical ECG data to detect
the temporal alteration. SIFT works by leveraging multiple physiological
signals based on the same underlying physiological process (e.g., cardiac
process) – arterial blood pressure and respiration. Analysis of our case
study demonstrates promising results with ∼98% accuracy in detecting
even subtle alterations in the temporal properties of an ECG signal.

1 Introduction

Emerging Body Sensor Networks (BSNs) have demonstrated great potential in
a broad range of applications in healthcare and wellbeing. The fact that BSNs
collect sensitive data and provide valuable information to caregivers and users
makes them attractive targets for tech-criminals to exploit. One such threat is
sensor compromise, which we define as the unauthorized modification of sensor
output (i.e., measurement) to relay incorrect patient health data to the base
station. The modification of sensor output can be done in several ways including
installation of malware on sensors that modify the readings [2], and inducing
arbitrary signals into sensor circuitry leading to erroneous readings [8].

Electrocardiogram (ECG) is one of the most widely deployed sensors on
individuals. Any compromise of ECG sensor or surreptitious alteration of the
sensor output can pose extreme consequences to a person’s health from missed
diagnosis and delayed treatment. In general, compromising an ECG sensor in a
BSN allows the adversary to alter its signal in two possible ways: (i) temporal
alteration, which modifies the timing information of ECG complex (e.g., inter-
beat-interval); and (ii) morphological alteration, which modifies the shape of the
ECG. In [1], we proposed a method to detect the morphological alterations of
ECG signal in BSNs. In this paper, we present a complementary work on detect-
ing temporal alterations of ECG sensor output due to adversarial compromise.



Temporal alterations can be used to modify a regular ECG signal to imply atrial
fibrillation (irregular heart rhythm) or atrial tachycardia (abnormally high heart
rhythm) or vice-versa.

Recent years have seen some work in the domain of anomaly detection in
BSNs. These approaches have tried to adapt sensor-redundancy-based methods
for detecting faulty sensors in BSNs [3, 5, 7, 12]. Such BSNs naturally require
considerable sensor-redundancies, where multiple sensors of the same type (e.g.,
accelerometers) measure the same limb movement. However, they might not be
applicable when we consider ECG sensors, since for usability reasons typically
there is only one ECG sensor in a BSN. Alternatively, history-based anomaly
detection approaches have also been proposed in [13]. However, the human body
is too dynamic for the past to effectively determine the current patient state at
all times.

In this regard, we present a novel methodology for detecting temporal al-
teration of ECG sensor output in a BSN called SIgnal Feature-correlation-
based Testing (SIFT). It works by generating a subject-specific model by cor-
relating their ECG sensor output with synchronously measured arterial blood
pressure (ABP) and respiration (RESP) signals. As ABP measures the same
physiological phenomena as ECG — the cardiac process, consequently, the inter-
beat intervals in ECG and inter-systolic peak intervals in ABP are highly corre-
lated. Further, both ABP and RESP signals affect the ECG inter-beat intervals
through the autonomic nervous system [4,11], which is reflected in the observa-
tion of several frequency-domain features in inter-beat-interval sequence, ABP
and RESP signals. Therefore, any alteration of the temporal properties of ECG
signal by an adversary, if not reflected as a commensurate change in the ABP and
RESP signals, is considered as evidence of compromise. The analysis of SIFT
demonstrates promising results with ∼98% accuracy in detecting even subtle
ECG signal alterations for both healthy subjects as well as subjects with cardiac
conditions.

2 Problem Statement and System Model

Formally speaking, let x be the signal the adversary is trying to alter, then the
goal is to find a means of detecting if this signal x has been temporally altered
to x′, solely-based on a set of reference signals Y = {y1, y2, ...yn} such that, each
yi, where 1 ≤ i ≤ n, shares certain common features with x, either in the time
or frequency-domain or both. In our case x is the ECG signal, while Y is a set
with n = 2 elements: ABP signal and RESP signal.

In terms of the system model we assume the BSN is comprised of a num-
ber of wearable medical sensors capturing physiological signals from patients,
especially the ECG, ABP and RESP sensors. These sensors continuously collect
health and contextual data at regular intervals and forward it over a single-
hop network to a highly capable base station for further processing. Our ECG
compromise detection system is deployed at the base station.
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In terms of the threat model we assume the primary goal of adversaries
is compromising the ECG sensor and temporally altering its output using side-
channel attacks such as [8]. Once the ECG sensor is compromised, it may gener-
ate erroneous output at any time. We assume that ABP and RESP sensors are
secure and will not be attacked.

3 SIFT: An Approach for ECG Temporal Alteration
Detection

In this section, we introduce our approach to the detection of temporal alter-
ation of ECG sensor output called Signal Feature-correlation based Testing
(SIFT). Figure 1 shows the basic operation of SIFT. It consists of three steps:
(1) feature generation, (2) training, and (3) detection.
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Fig. 1. Signal Feature-correlation based Testing for the Detection of Tem-
poral Alteration of ECG Sensor Output

Feature Generation: We view compromise of ECG sensors, with the inten-
tion of providing incorrect data about the subject, to manifest itself as temporal
changes in the output ECG signal. Temporal changes are associated with the
interval between two consecutive R-peaks being misreported. Therefore, we first
transform the ECG signal into a series of inter-beat-intervals by detecting the
R-peaks and calculating the time difference between two consecutive R-peaks.
The RR-tachogram thus produced forms our candidate signal. We then extract
feature points from this candidate signal with two other reference signals de-
rived from ABP and RESP signals. These feature points will then be used to
train a subject-specific model and used to detect ECG alterations. In all, we
extracted a set of 13 features from candidate and reference signals, which can
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be classified into two categories: (1) Time-Domain Features, which include (i)
correlation coefficient of the RR- and SS-intervals obtained from ECG and ABP
snippets; (ii) average RR-interval duration; and (iii) average SS-interval dura-
tion. (2) Frequency-Domain Features, which include (i) difference in frequency
at which Mayer wave is observed in the power spectrums of RR-tachogram and
SBP signal; (ii) difference in frequency at which the RSA wave is observed in the
power spectrums of RR-tachogram and RESP signal; (iii) highest, lowest and
average power in LF band of magnitude squared coherence (MSC1) between
RR-intervals and SBP signal; (iv) highest, lowest and average power in HF band
of MSC between RR-intervals and RESP signal; and (v) total number of peaks
in the LF and HF bands of MSC between RR-intervals and SBP signal and
RR-intervals and RESP signal, respectively.

Training: In order to account for the individual variation in the physiologi-
cal processes, we build a subject-specific model for each subject on whom we
tested our system. To train the models, we first extract the aforementioned
13-dimensional features from ∆ minutes (the time for which data needs to be
collected to train the model) of synchronously measured ECG, ABP and RESP
signals from the same subject and label these as negative class points (which
indicates the three signals are from the same patient). The feature extraction
is done using sliding window of size w < ∆, which is moved over the three
synchronously measured signals. Each w-sized window of data thus produces
one feature point for the system. We then extract the aforementioned features
using snippets from ECG signals with ABP and RESP signals from different
patients and label these as positive class points (which indicates the ECG sig-
nal is from the different patient but ABP and RESP signals are from the same
patient). Once the negative and positive points are collected, we feed them into
a machine learning classifier to generate a subject-specific model.

Detection: After model training stage is completed, we can use the trained
model for a subject to decide if any newly received snippet of ECG signal has
been temporally altered or not. Again, we use feature generation method for
w-sized long synchronously measured ECG and ABP and RESP snippets to
generate a feature point, and then feed this feature point to our subject-specific
model. Then the model will output a label for this feature point as negative or
positive. If the point is deemed positive, we raise an alarm. Note that we have to
set w to a value greater than or equal to 5 minutes because it is the recommended
duration needed to produce clear Mayer and RSA waves [9]. This means SIFT
needs at least 5-minutes of subject data to be able to determine signal alteration.
Developing alternative mechanisms for reducing the time needed to generate
alerts (i.e., ∆) is part of our future work for this project.

1 Magnitude squared coherence (MSC) is the measure of spectral coherence and mea-
sures the causality between the two signals. The MSC of two signals signal x(t) and

signal y(t) is defined as follows: Cxy(f) =
|Pxy(f)|2

Pxx(f)∗Pyy(f)
, where, Pxx(f) and Pyy(f)

denotes the power spectral densities of signal x(t) and signal y(t) respectively, and
Pxy(f) denotes the cross power spectral density of these two signals.
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4 Validation

Our goal with the validation was to demonstrate two things: (1) the ability
of our approach to detect changes in the temporal properties of ECG signals
induced by an adversary, and (2) the inability of an attacker to deceive SIFT
using synthetic ECG signals derived from historical ECG data from a subject.
Dataset: We collected 28 subjects’ data from the MIT PhysioBank Fantasia and
MGH databases [6]. The Fantasia database is made up of healthy subjects, while
the MGH database mainly contains data from subjects with specific cardiac con-
ditions (i.e., ailment). We categorize these subjects into three types: (1) Normal
subject type indicates subjects who did not suffer from any cardiac conditions
and had normal sinus rhythm ECG, which consists of 6 males and 7 females
with an average age of 44.46 (std 25.52). (2) Abnormal subject type indicates
subjects with consistent tachycardia or bradycardia, which consists of 4 males
and 2 females with an average age of 61.4 (std 19.25). (3) Mixed subject type
indicates subjects whose ECG signal showed both normal as well as tachycardia
or bradycardia rhythms, which consists 5 males and 4 females with an average
age of 44.78 (std. 20.39).
Detection Results: In our experiments, we select Naive Bayes as our classifier
to train the model. We set ∆ = 60 minutes and w = 5 minutes to produce the
feature points. Furthermore, we compared the results of SIFT with an approach
that analyzed historical RR-intervals to detect ECG alteration at any given time.
This case is represented by the label RR-only in the results.

Figures 2, 3 and 4 show the box-plots for balanced accuracy (BAC), false
positive (FP) and false negative (FN) rates of our detection system. In terms of
detection accuracy, we can see that RR-only is reasonably accurate (average BAC
of ∼87.41%). However, it has a considerably higher spread (compared to our
approach). The RR-only approach performs best for subjects in the Abnormal
set mainly because subjects in this set displayed unhealthy ECG (the variations
of the RR-interval in this group is considerable high) and therefore it was easy to
detect changes to these. In the case of Normal subject type the variations of box
plot were much larger because the variations of the RR-interval is comparably
smaller. Finally, in the case of the subjects in Mixed set the performance was
worst both in terms of median BAC as well as the spread because subjects in
this set exhibited ECG that was both normal as well as abnormal rhythms.

However, we can see that using SIFT the detection performance and spread is
considerably better than using RR-only approach in terms of median BAC, FP,
FN. For Normal subject type, our approach provides 98.46% BAC on average
with average FP at 2.44% and FN at 0.65%. Not surprisingly the performance
degrades a bit when we consider subjects with cardiac conditions. For the Mixed
subject type, the average BAC of SIFT is 96.39%. However, the average FP
increases to 6.06% with the average FN at 1.15%. We suspect the reason for this
increase is twofold: (1) on detailed examination of the data, some of the subject’s
ECG, ABP and RESP signals had considerable measurement errors, and (2) to
a lesser degree, physiological signals of subjects in the Mixed set display both
normal and abnormal rhythms and this decreases the classifier performance. In
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Fig. 2. Balanced Accuracy Rate for Our Approach and RR-only features
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Fig. 3. False Positive Rate for Our Approach and RR-only

the future, we plan to work on improving the proposed system to reduce the
second category of errors. For the Abnormal subject type, where the subjects
display consistently tachycardia or bradycardia, we found the average BAC to
be 98.81% with FP and FN at a much better 1.26% and 1.11%, respectively.
These results demonstrate that our approach can accurately detect temporal
alterations in ECG signal without sensor redundancy and considers the current
state of the subject in its operation. Additionally, our approach can distinguish
even subtle ECG signal temporal alterations for both healthy and unhealthy
subjects. By subtle changes we mean when an adversary replaces an ECG snippet
with another very similar one. For example, an actual ECG snippet with normal
sinus rhythm being replaced with an ECG snippet from another person with
normal sinus rhythm.

Attacks using Synthetic ECG: We add another layer of analysis to the ca-
pability of our approach in detecting ECG compromise by evaluating if it can be
fooled by using synthetic ECG signals obtained from generative models param-
eterized with a subject’s own ECG data. In this regard, we used ECGSYN [10]
a well-known synthetic ECG generator, which has been shown to generate clini-
cally relevant synthetic ECG signals given a set of input parameters. We trained
the ECGSYN model with actual subject’s ECG data collected over a number
of intervals from 5 minutes to 20 minutes from the dataset used to train the
subject-specific model. This simulates the case where the attacker knows a por-
tion of the ECG signals used to train the subject-specific model and uses it
to alter the current ECG signal. Based on our experiments we find that if we
use 10 minutes ECG data to train the ECGSYN model, we were able to detect
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Fig. 4. False Negative Rate for Our Approach and RR-only

the alteration of ECG (replacement of actual ECG with synthetic ECG from
ECGSYN) in 91.07% of the cases, giving us FN at 8.93%. Not surprisingly, the
FN goes up to 9.82% and the accuracy drops down to 90.18% as the amount of
data available for training the ECGSYN model is doubled to 20 minutes. Despite
the extreme assumption of the attacker having access to a portion of the same
data as our approach has trained its model, the approach works with over 90%
accuracy. This result shows that our approach is robust even to an adversary
who have access to a subject’s ECG data.

5 Related work

Most of the work in this domain has been on detecting faulty sensors in wireless
sensor networks. However, most of the fault detection schemes are based on two
main assumptions: (1) the network has a large number of sensors with identical
functionality deployed, and (2) for a given stimulus, the sensors in the same
neighborhood should have the similar sensed values. Given these assumptions,
the approaches cluster the nodes into different “subnets” according to their lo-
cation and compare the similarity of the sensor readings with others nearby
based on a pre-defined threshold. In recent years, researcher have tried to adapt
these redundancy-based methods to the domain of BSNs [3, 5, 7, 12]. Almost all
the work done for BSNs requires considerable sensor redundancies, i.e., motion
monitoring BSNs. Useful as these solutions are for detecting faults with motion
sensors, they might not be applicable when we consider physiological sensors in
a BSN, as typically there is only one sensor of a particular type. Finally, in [1],
a method to detect only the morphological alterations of ECG signals was pro-
posed. As stated before this work is complementary to our work and needs to
be used in conjunction with our work here to provide a full ECG compromise
detection system.

6 Conclusions

In this paper we presented SIFT, a novel methodology to detect temporal alter-
ation of an ECG sensor output using its correlation with arterial blood pressure
and respiration signals. Analysis of our approach demonstrated promising results
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with ∼98% accuracy in detecting even subtle ECG modifications. In the future,
we plan to extend this work in the following directions: (1) reducing the mini-
mum time for which data needs to be collected for effective training of the SIFT,
(2) implement SIFT on an actual BSN system to evaluate its performance, (3)
investigate ways to overcome our assumption that reference signals are not com-
promised, by using reference signals that are collected from more trustworthy
sources such as the base station.
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