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ABSTRACT

Pacemakers are devices used to regulate heart rate in individuals
with abnormal heart rhythms. They are often pairedwith a program-
mer, which can receive data from and send commands to them. The
goal of this work is to explore a new biometric-based authentication
layer to pacemaker-programmer communication. In this paper we
present our work on exploring the fusion of pacemaker electro-
gram and externally-measured cardiac rhythm (electrocardiogram,
plethysmogram) as biometrics for authenticating a programmer
to a pacemaker. In this preliminary work we use Right Ventricu-
lar Electrogram (RV EGM) signal from the pacemaker and Atrial
Electrogram (Atrial EGM) as a proxy for the externally measured
cardiac rhythm (particularly ECG) to show the feasibility of our
approach, achieving an accuracy rate of ∼92%.
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1 INTRO

Pacemakers are devices used to monitor and correct abnormalities
in heart rhythm. The heart normally acts as its own natural pace-
maker (i.e., it regulates itself), but in circumstances that cause an
individual’s heart to beat abnormally, a pacemaker may be required.
The sensors in the pacemaker collect data from the heart by de-
tecting electrical activity in the form of intra-cardiac electrogram
(EGM) signals, which are then sent, through leads (or wires), to a
computerized generator, or pulse generator. The pulse generator
determines if a pacing pulse is needed to assist the heart in beating
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[9]. Pacemakers are typically inserted beneath the skin just below
the collarbone, with leads and sensors going into the heart’s right
atrium and right ventricle [9]. Between 1993 and 2009, approxi-
mately 2.9 million pacemakers were implanted within individuals
in the United States [1]. With such a large portion of the popula-
tion relying on pacemakers, it is vital that these devices can only
accessed with the patient’s consent.

Pacemakers typically communicate wirelessly with nearby pro-
grammers, which are devices used to monitor and retrieve data
recorded by pacemakers and send commands to them to change
their operational mode [11]. Currently, many programmers come
equipped with telemetry wands that can be placed close to a pa-
tientÕs skin to initiate communication with the pacemaker over
an inductive link [11]. For Boston Scientific pacemakers, the in-
ductive link also enables cryptographic key distribution between
the pacemaker and the programmer. This establishes a secure and
authenticated session between the pacemaker and the programmer.
However, the inductive link adds cost to the manufacture of pace-
makers and programmers. Therefore alternatives are required that
enable secure and authentication communication between the pace-
maker and the programmer, independent of the use of the inductive
link.

In this paper, we focus on the authentication part of the prob-
lem and explore the use of a biometric-authentication between
the pacemaker and a programmer. The overall aim to increase the
authentication options available for pacemakers. The benefit of a
biometric authentication scheme is that it uses the cardiac prop-
erties measured by the pacemaker, directly for authentication.In
this regard, we develop a simple patient-specific authentication
model (located at the patient’s pacemaker device) that works by
fusing synchronously measured intra-cardiac electrogram (EGM)
data collected by the pacemaker deployed on a patient and exter-
nally measured cardiac signal collected from the same patient by the
programmer. Before the programmer can be authenticated to send
commands to the pacemaker, the programmer collects a cardiac
signal snippet (e.g., electrocardiogram) and sends it over a secure
channel to the pacemaker. The pacemaker then extracts character-
istic properties of this received signal snippet in tandem with its
own EGM signal to identify if the programmer is in the possession
of a healthcare provide who is treating the patient on whom the
pacemaker is deployed. If so, then subsequent commands from the
programmer are accepted. Even though biometrics have been used
for authentication in the past as in [4, 5, 7, 13, 14], they are all fo-
cused on using surface measured cardiac signals and hence cannot
be used with pacemakers, which don’t have access to such data.
To the best of our knowledge, this is the first use of electrogram
signals for biometrics in any form.

We present a preliminary work to determine the feasibility of
such an approach in this paper, using Right Ventricular Electrogram
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(RV EGM) as the signal measured by the pacemaker and Atrial
Electrogram (Atrial EGM) as proxy for the external cardiac signal
to be recorded by the programmer. We show that with sample
anonymized EGMdata recorded from actual Boston Scientific-brand
pacemakers, we are able to create a mock biometric-authentication
system that operates with an accuracy of ∼92%.

1.1 Problem Statement and Threat Model

The main aim of this work to is to ensure that the programmer
sending commands to the pacemaker is authorized, that is it has
patient’s consent to do so. We address this by developing a new
biometric authentication scheme for pacemakers based on using
two electrogram signals RV EGM and Atrial EGM. The Atrial EGM
is a proxy for an externally measured cardiac signal from the patient
on whom the pacemaker is deployed. In this regard, the principal
problem that we address in this paper is to determine the poten-

tial of Atrial and Right Ventricle EGM as a biometric. The threat

to our approach comes from adversaries attempting to program
a patient’s pacemaker by using arbitrary EGM signals from other
people to authenticate their programmer to the pacemaker. Further,
we assume that adversaries: (1) do not have access to the biometric
authentication model, (2) cannot pollute the model during the en-
rollment stage, and (3) do not have access to any form of cardiac
signal from the patient’s past or present. Further, we assume the
communication between the programmer and the pacemaker is
secure using any link-layer security solution.

2 AUTHENTICATION SCHEME

Our authentication approach is based on the premise that two sig-
nals characteristic of cardiac process collected from an individual,
if collected concurrently, will exhibit unique patterns specific to
the individual. The aim is to authenticate the programmer device to
the pacemaker before the pacemaker accepts commands from the
programmer. In our authentication approach, the programmer mea-
sures the patient’s cardiac process and sends this external cardiac
signal (e.g., electrocardiogram or plethysmogram) to the pacemaker
over a secure channel. The pacemaker makes its own EGM mea-
surement, synchronously with the programmer’s measurement. In
this regard our approach uses a novel biometric that is generated by
the fusion of the two synchronously measured EGM and external
cardiac signal and extracts several classes of features from them
in tandem. These feature classes are then used to learn a patient-
specific authentication model. This model essentially learns the
relationship between the pacemaker-measured EGM and program-
mer measured cardiac signal for a given patient. This authentication
model resides at the pacemaker and allows only those program-
mers that can measure the cardiac process from the same patient
to query and control it. Such an authentication approach can be
used to complement any additional authentication approach that
may exist between the pacemaker and the programmer.

Our authentication approach consists of three phases: (1) data
collection: obtaining the dataset used for authentication purposes,
(2) feature extraction: extraction of feature points from processed
data, (3) enrollment and authentication: construction and evaluation
of patient-specific authentication models. We describe these phases
below.

Figure 1: The Atrial and RV EGM episode from a patient
2.1 Data Collection

The first step in building our authentication model is to obtain sev-
eral snippets of EGM measurements at the pacemaker and cardiac
signal measurements measured at the the programmer, which can
then be used to build the authentication model. However, we did
not have access to a dataset containing synchronously measured
EGM and external cardiac signal. We therefore utilized two streams
of EGM measurements as the two signals. We used a dataset pro-
vided to us by Boston Scientific with Right Ventricular Electrogram
(RV EGM) measurements, and Atrial Electrogram (Atrial EGM)
measurements. For this work, we assume RV EGM as the EGM
measured by the pacemaker and Atrial EGM as the external cardiac
signal measurement performed at the programmer. This assump-
tion of using Atrial EGM as the external cardiac signal is a strong
assumption because such EGM measurements cannot be done out-
side the body as required by our approach. However, Atrial EGM
data is very similar in temporal and morphological properties as
externally measured electrocardiogram (ECG) and therefore forms
a nice proxy for an externally measured cardiac signal. Figure 1
shows an example of Atrial and RV EGM measurements for a pa-
tient plotted in tandem, showing how data collected from the two
waveforms. Figure 2 shows the similarity between the atrial EGM
and ECG signals overall.
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Figure 2: The temporal and morphological similarity be-

tween a typical Atrial EGM and ECG signals

2.2 Feature Extraction

In order to build an authentication model we need to extract fea-
tures from the Atrial and RV EGM signals. In this work, the features
are obtained from the fusion of synchronously measured Atrial and
RV EGM signal snippets. In the feature extraction process, we first
partition each episode of Atrial and RV EGMs into w time-unit
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segments, or windows. The size of the window is independent of
the episode length, but is usually kept as small as possible in order
to keep the authentication process fast. We then extract a total of
36 features from each window, that is, each segment produces a 36-
dimensional feature point. The features we extract from these win-
dows fall into five categories: (1) matrix features, (2) time-domain
features, (3) frequency-domain features, (4) beat-time-interval fea-
tures, (5) waveform similarity features. We now describe the main
idea behind each of these feature type below.

Matrix Features: These features capture the spatial interrelation-
ship between synchronously measured RV EGM and Atrial EGM
signals in a window. To generate the matrix features we first gen-
erate a portrait for the RV and Atrial EGM snippets. A portrait is
defined as an n-dimensional representation of the relationship be-
tween several time-series in one multi-dimensional space [6]. The
2-dimensional portrait P is calculated as such: f (t) = (rv(t),a(t)),
where rv(t) and a(t) are the normalized RV EGM and Atrial EGM
windows respectively, and 1 ≤ t ≤ w . Given the portrait, the matrix
features describe the distribution of points in the portrait that cap-
ture the shape of the RV EGM signal with respect to the Atrial EGM
signal. To obtain these features, we view the portrait under an n×n
grid and count the number of points from the portrait that fall into
each cell in the grid. This information is stored in an n × n matrix,
C , where each element, C(i, j), is the count of the number of points
in that cell. We chose n = 500 for generating the matrix C . From
this matrix we extract 3 features: (1) the square of the probability
that a point falls into an element C(i, j) of matrix C , (2) standard
deviation of column averages of matrix C , and (3) quantified area
under the curve formed by the column averages of matrix C .

Time-domain Features: Time-domain features describe the re-
lationship between R-peaks (heart beat) in normalized RV EGM
and Atrial EGM signals. There are two categories of time-domain
features: individual time-domain features and tandem time-domain
features. Individual time-domain features are extracted from RV
EGM and Atrial EGM windows independently, whereas tandem
time-domain features capture the interrelationship between RV
EGM and Atrial EGM. For individual time-domain features we ex-
tract the following 6 features from both RV EGM and Atrial EGM
windows (totaling 12 features): (i) number of peaks, (ii) average
peak-to-peak distance, (iii) standard deviation of peak-to-peak dis-
tances, (iv) average peak height, (v) standard deviation of peak
heights, (vi) distance between minimum and maximum peaks. Sim-
ilarly, we calculate the following six tandem time-domain features:
(i) ratio of number of R-peaks in RV EGM divided and number of
R-peaks in Atrial EGM, (ii) ratio of RV EGM mean peak height and
Atrial EGM mean peak height, (iii) ratio of standard deviation of
RV EGM peaks and the standard deviation of Atrial EGM peaks. (iv)
ratio of RV EGM peak-to-peak distance and the mean Atrial EGM
peak-to-peak distance, (v) ratio of RV EGM standard deviation of
peak-to-peak distance and the Atrial EGM standard deviation of
peak-to-peak distance, (vi) ratio of distance between minimum and
maximum peaks for RV EGM and the distance between minimum
and maximum peaks for Atrial EGM. This results in a grand total
of 18 time-domain features.

Frequency-Domain Features: Frequency-domain features capture
properties of RV EGMandAtrial EGM time-series in their frequency-
domain representations. Similar to time-domain features, frequency-
domain features are broken up into two categories: individual
frequency-domain features and tandem frequency-domain features.
The features are the same as the time-domain features expect they
are computed on the fast Fourier transform (FFT) of the RV and
Atrial EGMs. There are a total of 18 frequency-domain features as
well.

Beat-Time Interval Features: These features focus on the rela-
tionship between peak locations in RV EGM and Atrial EGM. This
first involves calculating the forward distance and backward dis-
tance between RV and Atrial EGM windows. Forward distance is
defined as the distance between an RV peak, and the closest Atrial
peak that follows it. Backward distance is defined as the distance
between an RV peak, and the closest Atrial peak that precedes it.
After obtaining separate arrays containing all forward distances
and all backward distances in a window, we extract the following
six features: the average, standard deviation, root-mean-square of
the forward distances, followed by the average, standard deviation,
root-mean-square of the backward distances.

Waveform Similarity Features: We compute a single waveform
similarity feature that determines the distance between the RV
EGM and Atrial EGM in a window. To obtain a scalar value that
is characteristic of distance between two waveforms, we use a
technique called Dynamic Time Warping (DTW). This technique
takes two waveforms as input (in this case, RV EGM and Atrial
EGM windows), and “stretches” the waveforms in such a way that
it minimizes the Euclidean distances between corresponding points
in the signals. The output of the function is equal to the sum of the
Euclidean distances between each point.
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Figure 3: Overview of the approach for authenticating a pro-

grammer to a pacemaker using the fusion of an externally

measured cardiac signal at the programmer and the RV elec-

trogram measured at the pacemaker as a biometric. In this

work we use the Atrial electrogram as a proxy for the exter-

nal cardiac signal.
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2.3 Enrollment and Authentication

The goal of enrollment stage is to build a patient-specific model
that captures the characteristics of the Atrial and RV EGM signals
measured from them in tandem. We use a supervised-learning
classifier to construct (train) the patient-specific model.

The feature vectors we used during our enrollment stage were 36-
dimensional values extracted fromw time-units of synchronously
measured Atrial and RV EGM signals. We generate a total of Fp =
Δ/w number of feature points per patient. Here, Δ represents the
amount of data required for enrollment of the patient-specificmodel,
and p is the index of the patient. Our classifier requires as input two
classes of feature vectors referred to as positive and negative class
points. Eachw window therefore generates a positive or negative
class feature point for the model. The positive class points capture
the situations where the Atrial and RV EGMs originate from the
patient whose model is being trained, while the negative class
points capture the situations where the Atrial and RV EGM signals
originate from other patients in our dataset. Hence to train a model
for patient 1, we have F1 positive class feature points obtained from
patient 1, and

∑
n
p=2 Fp negative points, where n is the total number

of patients in the dataset.
In the authentication stage, the trained patient-specific model

will decide whether to authenticate a programmer or not based
on newly receivedw time-unit snippet of the externally measured
cardiac signal (in our case the Atrial EGM signal, which is used as
proxy) from it (i.e., programmer). The pacemaker then collectsw
time-unit of locally measured RV EGM signal from the patient, and
then extracts the 36-dimensional feature from the Atrial and RV
EGMs in tadem. We feed this feature point into the patient-specific
model. The model then outputs a positive or negative label for
this feature point. If the feature point is labeled as positive, then
the programmer is considered as a legitimate patient and will be
authenticated. Figure 3 shows the overview of the enrollment and
authentication process.

3 EXPERIMENTAL SETUP

In this section, we illustrate how we select the three most important
parameters of our system: (1) Δ, the amount of data used during
enrollment of the patient-specific model, (2)w , which determines
the speed with which we can make our authentication decision, and
(3) the classifier of choice for our authentication model. We begin
with a discussion our dataset, followed by performance metrics
for identifying how well we are performing for various parameter
choices. Finally, we discuss the parameter selection itself.

3.1 Dataset

Our dataset had the following key characteristics. (1) It contained
RV and Atrial EGM from 67 patients. (2) For each patient we had
about 50, 30-second episodes of RV and Atrial EGM measurements.
(3) All measurements were obtained at a sampling rate of 200Hz.
(4) We had an equal number of synchronously measured Atrial and
RV EGM episodes per patient which we confirmed using the times-
tamps associated with the episodes. (5) Each set of synchronously
measured RV and Atrial EGM episodes per patient were recorded
at disparate intervals over the span of a year, and that each patient
had data recorded at different intervals.

Figure 4: Average cross-validation accuracy rate for different

ML algorithms, using differentwindow sizes. Note the y-axis

does not begin at the origin.

Figure 5: 10-fold cross-validation accuracy rate for a random

forest classifier with a 2 second window size and varying

numbers of trees

3.2 Metrics

We used the following metrics to evaluate the efficacy of our au-
thentication scheme: false accept rate (FAR), false reject rate (FRR),
and the accuracy rate. False accept rate (FAR) is defined as the ratio
of negative class feature points being tested by a model that are
misclassified as positive class feature points. False reject rate (FRR)
is defined as the ratio of positive feature class points being tested
by a model that are misclassified as negative class feature points.
The accuracy rate is simply the ratio of correctly predicted feature
points to total number of points tested by a model.

3.3 Parameter Selection

Our dataset consisted of ∼50 Atrial and RV EGM episodes per
patient.We chose the first 35 episodes to be used for training (i.e., Δ),
leaving ∼15 episodes for evaluation. The choice of 35 was arbitrary,
we wanted to ensure that each patient-specific model was trained
with the same number of episodes, and we had sufficient episodes
remaining for each patient to use as testing sets.

Rather than testing for w and the classifier independently, we
evaluated several different machine learning algorithms, for a range
of window sizes each. We used 10-fold cross-validation and accu-
racy rate, FAR, and FRR as the primary metrics to determine which
combination to use. Figure 5 illustrates the accuracy rate for various
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(a) Accuracy Rate (b) False Accept Rate (c) False Reject Rate

Figure 6: Aggregate accuracy, false accept rate, and false reject rate for models with various degrees of class imbalance during

enrollment.

w values for the following machine learning classifiers: random
forest (with 10 trees), Support Vector Machine (SVM), logistic re-
gression, k-nearest neighbors with 1 neighbor, k-nearest neighbors
with 10 neighbors. Note that these classifiers were chosen based
on their simplicity, as ultimately our classifier would reside in the
pacemaker device, which is severely resource constrained. We used
various values of w , which were factors of 30 to ensure that we
could evenly partition each episode of 30 seconds without having
left-over data. Figure 4 shows the average cross-validation accuracy
rate for the 5 listed machine learning algorithms, and 7 different
window sizes (starting from 1 second and ending at 30 seconds).
The results show that the random forest classifier has the highest
accuracy rate for every window size, and peaks at a window size of
w = 2 seconds (accuracy rate = 96.1%).

After selecting the random forest algorithm withw = 2 seconds
as our optimal parameters, we proceeded to fine tune the random
forest classifier. We hypothesized that increasing the number of
random forest decision trees would increase accuracy rate and
reduce error. We decided to test training random forest classifiers
with the same data, using different number of trees. We did not
exceed 210 trees, as the accuracy rate started to stabilize by this
point. Figure 5 shows accuracy rate for each classifier withw = 2s.
Accuracy rate was highest for random forest with 130 trees, at 96.9%.
Therefore we chose random forest with 130 trees as our classifier.

4 RESULTS

In this section, we present the results measuring the efficacy of our
authentication approach. Our goal here is to compute the authenti-
cation accuracy, false accept rate and false reject rate aggregated
over the 67 patient-specific models that we created. The quality of
the results obtained depend upon the way the models are trained.
As seen in Section 2 we have unbalanced enrollment data with an
order of magnitude more negative class feature points than positive
ones.

There are more negative class feature points than positive class
feature points during the enrollment phase. This creates a huge
imbalance in the two classes of feature points used to train the
model, which if left unchecked can lead to trivial models that learn
to label all test data as belonging to the majority class. To overcome
this problem we undersample the negative class feature points to

create a balance between both the positive and negative class fea-
ture points. We start the enrollment phase of each patient-specific
model with the same amount of positive and negative feature points:
(30/w) ∗ Δ where Δ = 35 episodes, andw = 2 seconds. The results
of our analysis is shown in Figure 6, displaying average accuracy
rate, FAR, and FRR. It can be seen that the accuracy rate decreases as
the number of negative feature points used in enrollment increases,
which is accompanied by an increase in the FRR as well. Further, we
performed 10 trials for each patient with different random samples
of negative feature points in order to evaluate the spread of the var-
ious metrics. This shows that as the class imbalance increases the
positive class becomes underrepresented, and hence misclassified
more often. The bars represent the spread of the values based on 10
trials. Overall, we see that the value of the various metrics remain
stable (have low variance) over the 10 trials. Since the performance
of the balanced model with 525 positive and negative class feature
points works the best, we use this model for the rest of the results.

Figure 7: Box plot for Accuracy, FAR, FRR for the bestmodel

Figure 7 provides a box plot for accuracy, FAR, and FRR for our
balanced model with 525 points for both positive and negative
classes. Overall, the median accuracy, FAR and FRR are 95%, 2.3%
and 7.6%. There are 7 patients whose accuracy rate was below
80%, and 2 patients whose accuracy rate was below 60%. These
outliers cause a drop in overall accuracy rate, and can be attributed
to the enrollment data and testing data for these patients having
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largely different characteristics. There are two potential causes
for this: (1) the heart rhythm for the patient changed, or (2) an
error in the pacemaker device led to a change in EGM recordings
for the patient. Assuming it is not the latter, we can deal with
patients whose physiology has changed since the time of training
by retraining the model.

One way of determining when to retrain the models would be
to see if accuracy drops as time between the model enrollment and
testing increases. If it does, then we can find a threshold and re-train
the model when the accuracy drops below this value. In this regard,
we randomly sampled episodes from each patient over the span
of a year and calculated the accuracy of these test feature points
vis-a-vis the duration of the episode from the time the patient’s
model was trained. In our dataset, the spread of the testing set
varied greatly from patient to patient, some patients’ data spanning
20-30 days, and other patients’ data spanning 150-200 days. Figure
8 shows testing spread (measured in days) plotted against classifier
accuracy rate for each of 67 patients in our dataset. Upon analysis,
we see that there is no correlation between classifier accuracy rate
and the spread measured in days since training (Pearson coefficient
R-value is: -0.2735, and the p-value is: 0.025126). This shows us
that our model’s authentication success depends purely on the
immediate physiological state of the patient and how similar it is to
the patient’s physiological state during enrollment. Finding ways
to deal with this problem to keep the authentication accuracy high
over time is an open question.

Figure 8: Accuracy Rate vs. Time since enrollment

5 RELATEDWORK

Authentication in the domain of low capability devices (such as IoT
devices) has been explored before [2, 3]. However, it is not clear
if they can be used directly for extremely low capability, safety-
critical devices such as pacemakers. Previous research specifically
on pacemakers has focused on their unauthorized programming
with rogue programmers, or external devices, bypassing the need
for authentication [11]. Since then work has been done to aug-
ment existing pacemaker features that prevent them from being
programmed in an unauthorized manner. For instance, in [10], the
authors discovered a way to create a little external device that would
jam the insecure communication to and from an implanted device
and then overlay a new secure wireless communication mechanism.

Other approaches have been proposed that authenticate the pro-
grammer using traditional biometrics such a fingerprint and iris
scans for authentication, especially during emergencies [12]. All
these approaches have been designed with existing pacemakers
in mind and need extra devices and scanners to work. A usability
analysis of solutions that use such additional devices for security
found that users did not like carrying these additional devices [8].
Consequently, we take a different route, one that fundamentally
augments the pacemaker functionality by addition a new layer of
authentication without using any additional device and is therefore
geared toward the next generation of pacemakers.

6 CONCLUSIONS

The purpose of our work was to determine the feasibility of using a
fusion of cardiac signals as a biometric for an authentication scheme
between the pacemaker and its programmer. In this regard, our
authentication approach deploys a patient-specific classifier-based
authentication model onto a pacemaker that fuses its own EGM
signal with a synchronously measured external cardiac signal at
the programmer. We showed that the fusion of right ventricular
(RV) EGM and atrial EGM (as proxy for the externally measured
cardiac signal) can produce an effective authentication scheme that
achieves an accuracy rate of ∼92%. In the future, we plan to perform
this work by (1) collecting actual external cardiac measurement
instead of using one of the EGMs as proxies, (2) making the threat
model less restrictive by allowing adversaries access to the user’s
historic cardiac data, (3) adding our own link security solution to the
authentication process, and (4) evaluating the energy consumption
of protocols thus developed.
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