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ABSTRACT
A head-mounted display (HMD) is a device, worn by a per-
son, which has a display in front of one or both eyes. HMDs
have applications in a variety of domains including gaming,
virtual reality, and medicine. In this paper we present an ap-
proach that can identify a user, from among a group of users,
by synchronously capturing their unconscious blinking and
head-movements using integrated HMD sensors. We ask each
user of the HMD to view a series of rapidly changing images
of numbers and letters on the HMD display. Simultaneously,
their blinks and head-movements are captured using infrared,
accelerometer, and gyroscope sensors. Analysis of our ap-
proach using blink and head-movement data collected from 20
individuals demonstrates the feasibility of our approach with
an accuracy of ∼94%.
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INTRODUCTION
A head-mounted display (HMD) is a device, worn by
a person, which has a display in front of one or both
eyes. HMDs come in many forms, including those
that project images and those that have transparent view-
ports. In recent years, HMDs have been developed for
a variety of applications such as virtual reality (Agevant
Glyph - http://www.avegant.com), gaming (Oculus Rift
- https://www.oculus.com/rift/), general-purpose displays
(Google Glass - http://www.google.com/glass/start).Thus far
the focus has been on demonstrating technical feasibility of
the technology, however there are still several important issues
∗The first three authors are undergraduate students who performed
this work as part of their final year project.
†Point of Contact

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISWC ’15, September 7–11, 2015, Osaka, Japan.
Copyright 2015 © ACM ISBN 978-1-4503-3578-2/15/09 . . . $15.00.
http://dx.doi.org/10.1145/2802083.2808391

that need to be addressed. These include access control (often
for privacy protection), ease of interaction, and personalization
[4]. Support for each of these requires the capability of - user
identification.

User identification enables HMDs to recognize users who are
interacting with (i.e., wearing) them. Formally, given a set of
N users of a particular HMD, the task of user identification
is to determine which of the N users is currently using (i.e.,
wearing) the device. The N users of the HMD in this context
are known a priori, and at any given time the HMD is worn
by one of the N users.

Traditionally, user identification in the wearable computing do-
main, which encompasses HMDs, has been performed in one
of three general ways. (1) Requiring devices to be statically
associated with a given user [3]. This association is accom-
plished by pairing a wearable device (e.g., Google Glass) with
the user’s smartphone or console (e.g., XBox). (2) Asking the
user to input their id, pin, pattern, or password for identifica-
tion. (3) Using biometrics such as voice or face recognition to
identify the user. In this paper we present a new and comple-
mentary solution that can enable user identification to occur
in a manner that is minimally intrusive because it does not
require the user to engage in any deliberate activity. The mini-
mally intrusive nature of our solution is important because it
accords to the demand for increased usability on HMDs [4].

At this stage we would like to clarify that user identification
is not the same as user authentication. The goal here is to
identify a user from among a group of known users. Authenti-
cation focuses on independently identifying a user from any
other user who is likely to use the system. In this preliminary
work, we focus on the relatively simpler problem of user iden-
tification. This means the designed approach should meet two
design goals: (1) it should be able to automatically identify
who is wearing the HMD from among a group of users; and (2)
it should not require users to input any identifying information
because doing so can limit HMD usability. Given our design
goals, we aim to design an approach that can identify a user
by synchronously capturing their unconscious blinking and
head-movements.

To demonstrate the feasibility of our approach for user identifi-
cation in HMDs, we collected data from 20 different individu-
als using Google Glass as an HMD platform. The preliminary
analysis of our approach shows a user identification accuracy
of over 94%. Overall, we demonstrate the feasibility of using
blinking and head movement for identifying users wearing
an HMD, in a minimally intrusive manner, without requiring



explicit user input. In the rest of the paper we use the terms
user and subjects interchangeably.

RELATED WORK
The use of blinking as a biometric for user identification is
not necessarily new. Westeyn and Starner [9] propose the use
of deliberate blinking to song cadences as a way to identify
users. The song cadences act as passwords, which if correctly
“played” enables user identification. The approach utilized
inter-blink interval, and duration of eye closure as the pri-
mary features of interest and achieved a 82.02% accuracy
in identifying a user from among nine users when all users
were asked to blink the same pattern. The authors therefore
concluded that blinking could be used as an additional bio-
metric in user authentication. Further, the approach relies on
deliberate blinking, something that we intend to avoid in our
approach. In [1, 2], the authors propose a mechanism for
obtaining an individual’s blinking patterns using brain waves,
and they demonstrate high identification accuracy. However,
both of these approaches require the ability to measure a per-
son’s EEG, a capability that most HMDs do not possess. Head
movement has also been suggested as a way to identify indi-
viduals [6], however, not much work has been done in this
regard. In [7], the authors present an approach that uses an
HMD to detect blinking behavior and head movement to de-
termine what task the user is performing. While this research
is useful, it deviates from our objective of user identification.
Its primary concern is to identify types of actions performed
by a user. In summary, the work done thus far has not been
sufficient to demonstrate a high accuracy, minimally intrusive
user identification on HMDs.

APPROACH
We use Google Glass as our HMD platform. The principal
reasons being: (1) it is an excellent model for the general
technical capabilities of HMDs (even though it is designed
for individual use and not for sharing); (2) it was relatively
easy to procure; and (3) it has the infrared, accelerometer and
gyroscope sensors needed to implement our approach. In this
section we describe the four operational stages of our approach
in more detail.

Data Collection
We use an infrared (IR) sensor built into the HMD platform
(Google Glass) to detect the user’s blinking pattern. We di-
rectly access the IR sensor built into the Google Glass platform
to obtain and detect the user’s blinking pattern. The IR sensor
in the Google Glass performs multiple distance measurements
between the sensor and the eye. The distance of a user’s eye
in relation to the IR sensor decreases when their eyelid is
closed and increases when their eyelid is open. With respect to
head-movement, we use the output of the accelerometer and
gyroscope sensors in the HMD to detect head-movement in
three dimensions. We use the gyroscope sensor to differen-
tiate between types of head-movement observed from users,
particularly the direction of movement. The accelerometer
sensor provides us a way to determine the magnitude of a
given head-movement. These accelerometer and gyroscope
sensors provide us with two separate time series.

The data from the IR, accelerometer, and gyroscope sensors
are collected from users while a rapid sequence of images

(with a single letter or number on them) are shown on the
HMD display. The use of images provides (1) visual fixation
for the users during the data collection/identification process,
and (2) standardizes the duration of data collection across
users. The use of the image sequence precludes the need for
the user to enter any identifying information. The images
trigger induced blinks (IBs) in the viewer. IBs are triggered
when a user is shown a visual stimulus, particularly during the
explicit and implicit shifts in the content [8].

Figure 1 shows an exact illustration of the sequence of images
as they are visible to the users. When users put on the HMD,
they are shown an initial sequence of instruction slides, which
inform them to focus on the numbers and letters that will
soon appear. The instruction sequence is then followed by an
audible cue and an image of a plus sign on the HMD display,
which informs the user that the image sequence is about to start.
Ten seconds later the image sequence commences. After the
initial instructions have been displayed, we start monitoring
the user’s blinks. While the plus sign is being shown, the blinks
are essentially spontaneous blinking (SB) (i.e., unconscious
blinking to maintain the tear-film in the eye as opposed to
IB which is more deliberate). We refer to this stage of blink
data collection as the SB phase. Once the rapidly changing
sequence of images starts playing, we refer to this as the IB
phase of blink data collection, as we are most likely observing
induced blinks.

The rapidly changing sequence of images is shown to each
of the users multiple times during the data collection process
in order to capture the variation in their blinking and head-
movement. Each cycle of the image sequence that is shown
to the user is called image sequence iteration. In our experi-
ments the image sequence iteration was 34 seconds long. We
chose such a long duration to be able to capture the individual
variations in the user blinking and head movement effectively.

Feature Extraction
Once the sensor readings are collected over several image
sequence iterations, the next step is to extract features from
them that can then be used to identify the user. This section
describes the different features extracted from the raw readings
from the IR, accelerometer, and gyroscope sensors in the HMD.
From each image sequence iteration we extracted a total of
162 features from the three sensor readings to create a feature
point (vector) for a user. We do not list all of the features here
due to limited space. Instead we present a categorization of
the features.

We collected a total of 72 blink features from the IR sensor
readings; 36 each from the SB and IB phases. These 72 blink
features can be classified into five classes. (1) IR Peaks: This
feature class measures the IR value returned at the apex of
a blink, or when the users eye is closed. (2) Rising IR: This
feature class measures the time it takes to close the eyelid
starting from the time when the eye starts to close during the
course of a blink. (3) Falling IR: This feature class measures
the time it takes to go from a fully closed eyelid to back to an
open eye during the course of a blink. (4) IR peak interval:
This feature class measures the time between two blinks and
captures how often people blink. (5) IR floor: This feature
class measures the IR floor value representing the open eye
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Figure 1. An annotated illustration of the image sequence shown to the
user during the data collection process. Of its two stages, the first stage
(in blue) informs the user what to expect during data collection. These
slides are shown only once. The initial instructions are followed by an
audio prompt which signals the start of the second stage – the actual data
collection. The second stage (in red) shows the slides that are actually
shown to the user. It always begins with a plus sign on the display. The
slides from the second stage are repeated several times with different
cue-cards.
state. Further, from each image sequence iteration we collected
a total of 90 head-movement-related features.

The features can be classified into three categories. (1) Gy-
roscope Peaks: This feature class measures the direction of
movement. (2) Accelerometer Peaks: This feature class mea-
sures the magnitude of movement observed for a user, particu-
larly sudden head-movements (e.g., jerk). (3) Movement time:
This feature class measures the time elapsed between various
head-movements that were observed. For all three types of
sensor readings (i.e., IR, gyroscope, and accelerometer), peaks
were identified using a simple threshold, which was set to a
single standard deviation above the mean.

Our goal in devising the original feature set was to select
as many features as possible to ensure that in order to en-
sure that no pertinent features that can potentially influence
user identification were missed. We therefore ranked the fea-
tures based on the gain ratio, which is the probabilistic gain
the feature adds toward correctly classifying a feature point
and is measured as a rank in comparison to other features.
Overall, we found a total of 96 relevant features from the
original 162 features we started with. That is, we retained
about 59.2% of the features we started with. In terms of the
blink and movement features we retained 73.6% and 47.7%
of the features, respectively. Please visit the following link
(http://hibou.cs.wpi.edu/˜kven/iswc/features.pdf) to see a
list of the relevant features we used for this work.

Enrollment and Identification
Once the features are extracted for each user, the next step is to
train a classifier for the group of users. We refer to this stage
as enrollment. During enrollment, we capture sensor readings
from each user in the group over a certain number of image
sequence iterations. Each image sequence iteration produces
a single feature point (feature vector), which is then used as
a training sample for the classifier. Our method thus trains a
classifier for each user by using that user’s feature points as
positive examples and all the feature points from other users
as negative examples. This is the one-versus-all strategy used
for multi-class classification. Using this approach, each new

user requires the retraining of all models; however, we only
need to collect samples from the new user because we can
reuse the training data from the users who have already been
enrolled. We examined several algorithms for the classifier
including Random Forest, Support Vector Machine (SVM),
and k-Nearest-Neighbor (kNN) and settled on using Random
Forest (RF) with 100 trees. We chose RF because it copes well
with the diverse, un-normalized features that have nonlinear
relationships. In this work, we used 10 image sequence itera-
tions to train the classifier. Once the classifier is trained, the
next step is to use it to identify previously unobserved feature
points from the users enrolled. A test feature point classified
as positive for a given user is said to match that user’s features;
otherwise, the test feature vector is classified as negative.

EXPERIMENTAL SETUP
Dataset
In order to validate our approach, we needed data from the
individuals wearing Google Glass. Therefore, we obtained
approval from our university’s institutional review board (IRB)
and collected data from 20 volunteer users (15 males and 5
females with an average age of 22.25 years and SD of 3.7
years). The users were mostly drawn from the students on
our campus. All data collection was conducted in a quiet
space with adequate fluorescent lighting. We did not make
an attempt to standardize the amount of lighting in the room
where data was collected, beyond ensuring that the rooms were
brightly lit. The data collection was performed both at our
lab as well as at the users’ homes. The users were informed
of the purpose of our study and asked to sign a consent form
approved by the IRB.

Evaluation Metrics
We performed a 10-fold cross-validation on the feature points
to determine the efficacy of our approach. Given a set of test
feature points being evaluated by the user-specific classifier,
each test feature point from that specific user was labeled pos-
itive, while all the others were labeled negative, forming the
ground-truth. We then used the aforementioned classifiers to
classify all the test feature points, resulting in a positive or
negative classification for each. Ideally, the classifier would
classify only those test feature points belonging to the user as
positive and everything else as negative. Given the classifica-
tion results, we evaluated them based on the following metrics:
false acceptance rate (FAR), false rejection rate (FRR), and
balanced accuracy rate (BAC). The false acceptance rate
(FAR), is the fraction of negatively labeled test feature points
(the ground truth) that were misclassified as positive. The false
rejection rate (FRR), is the fraction of positively labeled test
feature points (the ground truth) that were misclassified as
negative. The balanced accuracy rate (BAC), is the sum of
half of the true acceptance rate (TAR), and half of the true
rejection rate (TRR). TAR is the fraction of positively labeled
test feature points that were classified as positive, while TRR
is the fraction of negatively labeled test feature points that
were classified as negative. BAC is used instead of simple
accuracy results to compensate for the sample imbalance (i.e.,
we have many more negative examples than positive ones)
during the enrollment phase. Even though we compute these
metrics for every user in our dataset, we present summary
statistics of these metrics over all users. All our analysis was
performed using WEKA [5].

http://hibou.cs.wpi.edu/~kven/iswc/features.pdf


1.5	   1.6	   3.0	   1.6	  

29.5	  
32.1	  

62.1	  

32.7	  

84.5	   83.2	  

67.5	  

82.9	  

0.0	  

10.0	  

20.0	  

30.0	  

40.0	  

50.0	  

60.0	  

70.0	  

80.0	  

90.0	  

IB	   SB	   Gryo	   Acc	  

M
ea
su
re
	  (%

)	  

FAR	   FRR	   BAC	  

Figure 2. Performance of our approach w.r.t. the constituent feature
groups. The blink features are broken down into constituent data col-
lection phases, i.e., the SB phase and the IB phase. In the case of the
movement features, the break-down is done based on the sensor types,
i.e., accelerometer and gyroscope features. For each feature group we
show the BAC, FRR and FAR metrics.

PERFORMANCE ANALYSIS
Overall Performance: To derive the overall performance, we
ran the enrollment and identification processes a total three
times for each of the 20 users and averaged the results. Our
approach has a BAC of 94.4% with FRR of 11.3% and FAR
of 0.5%. These results demonstrate that our approach is very
effective in identifying users. The 0.5% FAR demonstrates that
our approach makes very few errors in terms of identifying
someone else as a particular user. However a ∼11% FRR
indicates that the approach makes considerable mistakes in
identifying a particular user as such. This makes the approach
difficult to use, something we plan to address in future work.

Performance of Various Feature Groups: Given the overall
performance, our next goal was to try to determine which
feature groups within our model contributed the most to the
identification process. Figure 2 shows the BAC, FRR and FAR
for the various feature groups. The feature group breakdown
is as follows. Note that the blink features collected during
the IB phase, when the user is watching the image sequence,
is the most important in identifying a user, while the gyro-
scope is the least important. Individually none of the features
groups achieve over 85% accuracy, but together they improve
the identification accuracy by over 10%. These results show
that combining the various types of feature groups might be
essential for robust identification.

These results demonstrate the feasibility of using blinking
and head movement patterns for user identification without
a self-identifying input from the user. However, there are
still several concerns that need addressing. In addition to the
aforementioned iteration duration, we may risk have a model
prone to overfitting because of the use a very large feature
set with only 20 users and three iterations. We suspect that
by reducing the number of features to a handful, reducing
the iteration duration, and increasing the number of users we
can reduce the risk of overfitting and still obtain considerably
accurate results. We are currently pursing this line of inquiry.

CONCLUSIONS
In this paper we presented a novel approach for identifying
a user from a set of HMD users by utilizing their distinctive
blinking and head-movement patterns. A preliminary analysis

of our approach using data collected from 20 users demon-
strates that our approach is over 94% accurate in identifying
a user. In the immediate future we plan to extend this work
in several directions including: (1) reducing the FRR and du-
ration of each image sequence iteration from the current 34
seconds, (2) reducing the number of features in our approach,
(3) evaluating the performance of our approach for different
types of visual stimuli with varying degrees of content rich-
ness, and (4) studying the effectiveness of our approach for
more diverse scenarios (e.g., effects of fatigue, effects of time
elapsed between enrollment and identification on identifica-
tion accuracy) and more diverse populations (e.g., older adults,
children).
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