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Abstract. In this paper, we propose an authentication approach based
on the uniqueness of the biomechanics of finger movements. We use an
optical-marker-based motion-capture as a preliminary setup to capture
goniometric (joint-related) and dermatologic (skin-related) features from
the flexion and extension of the index and middle fingers of a subject. We
use this information to build a personalized authentication model for a
given subject. Analysis of our approach using finger motion-capture from
8 subjects, using reflective tracking markers placed around the joints of
index and middle fingers of the subjects shows its viability. In this pre-
liminary study, we achieve an average equal error rate (EER) — when
false accept rate and false reject rate are equal — of 6.3% in authenticat-
ing a subject immediately after training the authentication model and
16.4% ERR after a week.

Keywords: Authentication · Biometrics · Finger Biomechanics ·Motion-
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1 Introduction

The idea behind biometrics is to use, in an automated manner, the traits of
human physiology and/or behavior as a way to uniquely recognize (authenticate)
a person and clearly distinguish this person from others. Biometric data are
increasingly being used in a large number of governmental and private programs,
such as airport security, school attendance, and public assistance programs [9].
The increase in the use of biometric data to control access to programs, services,
and facilities raises the need for newer biometric modalities. Once we have linked
an identity to a set of biometric traits collected from a person, we can then
identify and/or authenticate them as well.

In this paper, we make the case for a novel biometric-based authentication
approach that uses biometric traits from human fingers. Human fingers are ex-
tremely complex limbs. The way the fingers of a person move to bend (flex-
ion), straighten (extension) and rotate (circumduction) is determined by their
anatomy. That is, the combination of the ligaments, blood vessels, joints, bone
structure, tissues, muscle, and skin that constitute fingers determine the type
and extent of movements they make. We argue that by using notions from biome-
chanics we can capture these anatomical characteristics from a person’s fingers
and develop a rich new class of traits, which can be used as biometrics. Of
course, finger-based biometrics is nothing new. Biometrics based on fingerprints
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[10], palm print [8], finger vein patterns [12], and even knuckle-print [5] have
existed for a while. As important as these biometrics are, we argue that there
is a whole slew of finger-centric biometrics that have not yet been explored,
those based on the uniqueness of the biomechanics of a person’s fingers. Finger
biomechanics has many uses as a complementary biometric for people for whom
existing biometrics fail. For example, the visually impaired. Fewer than 10% of
people who are legally blind in the US are able to read Braille, they cannot
easily use ubiquitous PIN/password-based authentication systems [3]. Hence, a
solution based on biomechanics can be very useful for such a population.

In order to capture the biomechanics of a person’s fingers, we explore an
approach that uses marker-based optical motion-capture of the flexion and ex-
tension of a person’s index and middle fingers to understand the unique patterns
underlying such motion. We then build a machine learning-based authentication
model that uses ensemble learning and subject-specific features, to capture the
individual uniqueness of the finger flexions and extensions. This model can then
be used to identify a person when they perform a single finger flexion and ex-
tension at a later time. Although we use motion capture to identify the key
characteristics in this preliminary study due to the high precision and frame
rate, ultimately these features are expected to be able to be identified using
compact and economical sensors.

In this preliminary work, we use marker-based motion-capture to demon-
strate the viability of finger biomechanics as a biometric for authentication.
Analysis of our approach using finger motion-capture from 8 subjects, using re-
flective tracking markers placed around the joints of index and middle fingers,
shows an average equal error rate (EER)1 of ∼ 6.3% in authenticating an indi-
vidual immediately after training and around 16.4% EER after a week. The con-
tributions of this work are: (1) a preliminary authentication approach based
on biometrics derived from finger movement captured using a motion-capture
system, (2) demonstration of the viability of the proposed approach using finger
movement data collected longitudinally. Note that, in this work, we only aim to
show the viability of the finger biomechanics as a biometric. There are several
problems that still need to be addressed to make an authentication system that
uses finger biomechanics, for instance, eliminating the need for markers in the
motion capture, which we plan to consider in the future.

1.1 Problem Statement

We next detail our problem statement and the assumed threat model for this
work. The principal problem that we address in this paper is to determine if
the flexion and extension of index and middle fingers of a subject are capable
of uniquely identifying them. We assume that the threat to our authentication
approach comes from adversaries trying to declare themselves to be a particular
subject (i.e., victim) and try to use their own finger movements to authenticate
as the victim. For the purposes of this work, we assume that adversaries: (1)
do not have access to the authentication model, and (2) cannot pollute the
authentication model during the training stage.

1 Equal error rate is the value where the false accept and false reject rates for a model
are equal.
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2 Approach

Our approach to authentication based on flexion and extension of a person’s
fingers has four phases. Data collection phase describes our process for capturing
a subject’s index and middle finger flexion and extension using a marker-based
motion-capture setup. The feature extraction phase then processes this motion-
capture data to extract several biomechanical traits of the fingers. We then use
these features to train an authentication model in the training phase. Finally,
in the authentication phase, we used the authentication model to identify the
subject at a later time. We now describe each of these phases in detail.

(a) (b)

Fig. 1. An illustration of: (a) motion-capture marker placement and naming convention
used for data collection, (b) reference for various joints in the hand. In (a) D, M, P,
and H stand for distal, medial, proximal, and hand, respectively. While I and M stand
for index and middle, respectively.

2.1 Motion-Capture-based Data Collection

We collected data from 8 different subjects. Each subject had 21 reflective hemi-
spherical markers (3mm facial markers, NaturalPoint, Inc., Corvallis Oregon)
[2] attached to the dorsum of their right hand using a cosmetic adhesive. We
placed three markers over each presumed rigid segment of the index and middle
fingers, establishing a 3DoF reference frame for each. No articulation (move-
ment) is assumed to occur between the 2nd and 3rd metacarpal bones, hence a
single set of three markers is placed over them, establishing the hand tracking
frame H. The marker placement and their naming convention is shown in Fig-
ure 1 (a). Figure 1 (b) shows the various joints in the hand for reference. We
asked the participants to sit at a table with 8 optical tracking cameras (Opti-
track Flex 13, NaturalPoint, Inc.,) placed to the left, right, front, and above the
hand. We placed the cameras approximately 1m from the center of the capture
volume. Prior to data collection, for each subject, we calibrated the cameras
with a 100mm long calibration wand until an average residual error of less than
0.3mm was achieved. Position data for the markers, relative to a global reference
frame, was logged at 120Hz. Markers were manually labeled in post-processing
(we expect to automate this in the future).

Each subject was instructed to repeatedly perform flexion and extension
within the motion-capture volume for both index and middle fingers. This re-
sults in 4 types of joint movements for flexion: (1) coupled flexion of the proximal
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(a) (b)

Fig. 2. An illustration of a set of performed movements for the index finger and its
markers: (a) Coupled flexion and extension of the proximal interphalangeal (PIP) and
distal interphalangeal (DIP) joints. (b) Flexion and extension of the metacarpopha-
langeal (MCP) joint.

interphalangeal (PIP) and distal interphalangeal (DIP) joints of the index fin-
ger, (2) flexion of the index finger metacarpophalangeal (MCP) joint, (3) coupled
flexion of the proximal interphalangeal (PIP) and distal interphalangeal (DIP)
joints of the middle finger, and (4) flexion of the middle finger metacarpopha-
langeal (MCP) joint. A depiction of these movements for the index finger is
shown in Figures 2 (a) and 2 (b). Since every flexion is accompanied by an ex-
tension of the finger, we have the same 4 types of joint movements for extension
as well. We demonstrated the finger movement to the participants before data
collection. Even though, we ask the users to perform simple finger flexions and
extensions, the exact angle of flexion/extension is not prescribed or controlled.
We aim to build aggregate models characterizing the overall flexion/extension
capability of the user based on a variety of characteristics (see next section),
which turn out to be unique. For example, Figure 3 shows the joint positions for
the index fingers of 2 different subjects while they repeatedly flex their MCP.
The viewpoint is set be orthogonal to the MCP axes of both subjects and their
MCPs are fixed at 0,0. Their fingers are fully extended when the joints are near
the line x=0. It is easy to see that the joints for the two subjects follow distinct
paths. Once the data was collected, we post-processed it to calculate the position
and orientation of each joint throughout the performed finger movement. The
positions and orientations of the joints were found from the motion-capture data
using methods of Gamage et al. [7].

2.2 Feature Extraction

For feature extraction, we considered not just the joints specifically being flexed,
but rather all the joints of the index and middle fingers. Biomechanic and neuro-
logical features, such as muscle synergies and friction between adjacent tendons,
typically prohibit decoupled movement of the fingers. These coupled movements
may contain difficult-to-replicate signatures specific to an individual. For each
of the two tracked fingers, there were 58 features captured which can be divided
into two categories: (1) goniometric features, which describe joint rotations, and
(2) dermatologic features, which describe skin movement. There were 48 gonio-
metric and 10 dermatological features.

To define the start and end time of a flexion motion, we consider the point
where the joint reaches 10% of its range of motion as the start and the point at
which the joint reaches 90% of its range of motion as the end. Similarly for exten-
sion, we consider the point where the joint reaches 90% of its range of motion as
the start and 10% as the end. These thresholds help to make repeated measure-
ments of an individual consistent where measurement noise or small movements
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of the joints are not incorrectly identified as the start of an observed flexion or ex-
tension.

Comparison of Index Finger Motion for 2 Subjects
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Fig. 3. Joint positions for the
index fingers of 2 different
subjects while they repeatedly
flex their MCP.

The goniometric features extracted can be classi-
fied into six categories of joint measurements for
both flexion and extension. These include: (1) PIP
joint-related measurements, (2) DIP joint-related
measurements, (3) MCP joint-related measure-
ments, (4) DIP-PIP interrelationship, (5) PIP-
MCP interrelationship, and (6) DIP-MCP inter-
relationship. The latter 3 feature categories cap-
ture how the DIP, PIP, and MCP joints change
in relation to each other during finger flexion and
extension.

The PIP, DIP, and MCP joint-related mea-
surements each are a set of 12 features (total
3 × 12 = 36 features) that capture: (1) the basic
statistics of the angle of the joint at various times
during flexion and extension (these features per-
tain to the particular angle that the finer joints
make during flexion and extension); (2) the tra-
jectory of the joint during flexion and extension
modeled as a quintic function, whose coefficients form the features (which cap-
tures both the angles and the broader trajectory of the finger movement); (3)
the slope of a linear fit for the trajectory measuring the rate of change of the
joint angle during flexion and extension (which represents the speed of the fin-
ger motion). Similarly, the DIP-PIP, PIP-MCP and DIP-MCP interrelationship
feature categories are a list of 4 features (total 3 × 4 = 12 features) each that
capture the maximum, median, and average of the ratio of the two joint angles,
along with the slope of the linear fit of the scatter plot between the two joint
positions during flexion and extension. Together we have a total of 48 (36 + 12)
goniometric features.

For the dermatologic features, we primarily measure how much the skin
stretches at the proximal and medial phalanges when the finger flexes and ex-
tends. At both the phalanges, we extract 5 features, which capture the skin
stretch at the beginning and end of the finger movement, the average and me-
dian skin stretch, and the skin stretch rate. Together we have a total of 10 (5×2)
dermatologic features.

Since all of these features are measured for both the index and middle fingers,
we extract a total of (48 + 10) × 2 = 116 features during both flexion and
extension of the index and middle fingers. A full list of our features can be seen
at: https://anonymoussubmissionuser.github.io/FeatureList/.

2.3 Training and Authentication

Once we have the features from the motion-capture of finger flexion and ex-
tension, we train an authentication model for each subject in our dataset. The
authentication model is a one-vs.-all personalized model for a subject. Subse-
quently, this model is used in the authentication phase, when a newly captured
finger flexion and extension of either finger is evaluated by the model to see if it
belongs to the subject.
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Fig. 4. Overview of our authentication approach.

Training Phase: During the training phase, we use a portion of our finger
motion-capture data to build an authentication model for each subject (we give
more details on this in the next section). The training data consists of several
iterations of coupled flexion and extension of the PIP and DIP joints and the
flexion and extension of the MCP joint as shown in Figure 2 for both the index
and middle fingers. For each flexion and it’s corresponding extension, we extract
a total of 116 features from the motion-capture of the fingers. Once the features
are extracted, in order to build an authentication model, we train a personalized
model for each subject in our dataset. We take the features extracted from the
finger movements performed by a particular subject during the training phase
as positive class feature points for the subject’s personalized model. We then
use the features from finger movements performed by all other subjects in our
dataset during the training phase as negative class points for the personalized
model. These negative class feature points simulate the condition when someone
other than the subject, i.e., an adversary, tries to authenticate as the subject. We
use both the negative and positive class points for training a machine-learning
classifier that acts as the authentication model.

During training we have many more negative feature points than positive
feature points. Therefore, we create an ensemble of several classifiers for our
authentication model. This is needed to make sure the model does not get biased
by the majority class during training. Therefore, instead of one classifier we
use a group of 7 classifiers (as we have seven times as many negative feature
points than positive feature points), each classifier uses all the positive feature
points but using only 1/7th of the negative feature points, which are randomly
selected without replacement. Since flexion and extension are two separate types
of movements, whose features have different underlying characteristics, we build
a total of 14 classifiers (7 that use flexion features and 7 that use extension
features). Each of our 14 classifiers outputs a confidence value that describes how
confident the classifier is that a new feature point belongs to the subject (whose
model is being used). These confidence values from the classifiers are averaged
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independently for flexion and extension and then averaged again to produce a
final confidence value. If this final confidence value is greater than the threshold,
t, the model outputs that the new feature point belongs to the subject whose
model is being used. All 14 classifiers use the same machine-learning algorithm
in our setup.

Authentication Phase: Once the classifiers in the ensemble model are
trained using the training data, they can be used to determine whether a new (yet
unclassified) flexion and extension movement pair belongs to that subject or not.
During the authentication phase, the subject is asked to flex and extend their
index or middle finger once (either a coupled flexion and extension of the DIP
and PIP joints or a flexion and extension of the MCP joint). The motion-capture
system captures the movement and extracts two 116-dimensional features, one
for flexion and one for extension. The feature from finger flexion is fed into the 7
classifier ensemble for the flexion features and the feature from finger extension
is fed into the 7 classifier ensemble for the extension features. The average of
the confidence values of each of these groups of classifiers are then compared
against a threshold, t, as described above, to produce the final result that states
whether these two new features belong to the subject or not. A diagram of our
approach is illustrated in Figure 4.

3 Experimental Setup

In this section we briefly discuss our experimental methodology to evaluate the
efficacy of our authentication approach, the choice of machine-learning classifier
chosen, and the customization of the feature set for each subject.

Fig. 5. ROC curves for 5-fold cross validation for
various machine-learning classifiers

Dataset Curation: We ob-
tained an institutional review
board (IRB) approval from
our university for the data
collection. We then recruited
eight subjects from the stu-
dent population for this work.
These includes 3 males and 5
females aged 22.1 ± 4.1 years
(mean ± std deviation). Dur-
ing data collection we asked
each subject to flex and ex-
tend their index and middle
fingers 10 times in a session.
We conducted our data collec-
tion over two sessions, which
we refer to as session 1 and
session 2. Session 2 was con-
ducted roughly 1 week af-
ter session 1, and data from
all subjects were collected in
both sessions. For training the models, we used the first 8 iterations of flexion
and extension collected from the index and middle fingers for each subject from
session 1. We refer to this subset of our dataset as the training data. The rest
of the flexions and extensions from session 1 and all of session 2 are used to
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evaluate the models trained and are referred to as test data2. The use of data
from two sessions allows us to evaluate the performance of our authentication
model longitudinally. As the training data consists of eight iterations for IP ex-
tension, IP flexion, MCP extension, and MCP flexion collected from index and
middle fingers for each subject, there are (8 × 4 × 2) = 64 movements in each
subject’s training set. Given the organization of our ensemble model, we split our
training data into two different training groups of 32 flexion movements and 32
extension movements, each producing a positive feature point (116-dimensional
feature) for our model. In addition, since each subject has their own model, all
of the training data from the other subjects in the dataset is used to generate
the negative feature points for that subject’s authentication model. Therefore,
for each subject there are a total of 32 × 7 = 224 flexion and 224 extension
(116-dimensional) negative feature points.

Metrics: In order to evaluate the efficacy of our approach, we use the fol-
lowing five core metrics. (1) True Reject Rate (TRR): the rate at which true
negative feature points (i.e., points from subjects other than the one that the
system is trained for) are rejected by the model. (2) False Accept Rate (FAR):
the rate at which true negative feature points are accepted by the model. (3) True
Accept Rate (TAR) the rate at which true positive feature points (i.e., points
from the subject) are accepted by the model. (4) False Reject Rate (FRR): the
rate at which true positive feature points are rejected by the model. (5) Equal
Error Rate (EER): The rate at which the FAR and the FRR are equal. This is
a customary metric in the biometrics/authentication domain and is the point at
which our model balances the accuracy of its detection with usability. It can be
seen that the highest authentication accuracy ((TPR+TRR)/2) of the authen-
tication model is at 1 − EER.

Classifier Selection: We examine several classifiers for our authentication
model, by performing 5-fold cross validation on our ensemble classifier model
using the training data. The classifiers that we considered are: Random Forest
with 50 trees, K-nearest neighbors with k=3, Gaussian Naive Bayes, Bernoulli
Naive Bayes, Support Vector Machine (SVC) with a Linear Kernel, SVC with a
polynomial kernel, and Logistic Regression. The reason we chose these classifiers
is because of their simplicity and excellent tool support. Ultimately, Random
Forest with 50 trees was chosen as it performed the best during cross validation.
The Receiver Operating Characteristic (ROC curve) for cross validation of the
classifiers can be seen in Figure 5. An ROC curve plots TAR vs. FAR at various
operating points of a classifier. The larger the area under the curve, the better
the classifier’s performance.

Feature Customization: Finally, as subjects are unique, systems are more
effective if they are tuned to fit a particular subject [15]. As a result, we use
greedy backward feature subset selection (i.e., slowly reduce the number of fea-
tures used by a model until we reach about half the total number of features) in
order to customize the feature set for each individual subject during the train-
ing phase. Given that we have 14 classifiers in our authentication model for a
subject, we run the feature subset selection for each of the 14 random forest clas-
sifiers to produce a customized feature subset for each subject. Figure 6 shows
a heat-map of how many of the classifiers, out of the 14 classifier set, for each

2 We use only the first session’s data for training because that’s how typical authen-
tication modality works. We enroll (in our case train the model) once and then
subsequently authenticate repeatedly.
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subject contained a particular feature. The number of classifiers that choose a
feature for a subject is written in the corresponding square in the heat map. Fur-
ther, the larger this number, the darker its coloring. Features are ranked from
left to right in descending order of the number of times they were chosen for all
subjects. Only features which were chosen by at least three classifiers by every
subject are shown in order to highlight the best performing features.

When performing the feature customization, we find that there is great vari-
ability in the features selected among the subjects. Several features were selected
by a large number of classifiers (13 or 14 classifiers) for a few subjects, but were
largely not chosen (i.e., selected by less than 7 classifiers) for other subjects. This
indicates that features are fairly unique or personalized to a particular subject
or small subset of subjects. For example, feature 68 in Figure 6 is chosen in all
14 classifiers for subject 2, but only chosen in 10 classifiers for subjects 5, and
8, and in 7 or fewer classifiers for the remaining subjects. This indicates that
feature 68 is fairly unique to subject 2. Such patterns can be seen in other places
in Figure 6 as well, for instance, any column that has a few dark squares are
examples of such subject-specific features.

We also found that there were 8 features that performed well in general
across all subject models with every subject’s model choosing the feature in at
least 7 classifiers (50% of the time or more). Those features were (1) feature 13 :
index finger MCP joint angle median; (2) feature 14 : index finger MCP joint
angle average; (3) feature 11 : index finger MCP joint angle start; (4) feature 12 :
index finger MCP joint angle end; (5) feature 66 : middle finger PIP joint angle
median; (6) feature 15 : index finger MCP range of motion (10% to 90%); (7)
feature 40 : index finger MCP quintic coefficient a0; and (8) feature 108 : Proximal
skin stretch at 90% range of motion. Since many of these features pertain to the
MCP joint on the index finger, this is a joint that we may want to examine in
more detail for future work.

Fig. 6. Feature importance heat-map. Feature IDs align with the feature list provided
at: https://anonymoussubmissionuser.github.io/FeatureList/.

4 Results

Once the classifiers in our model are chosen and trained, the next step is to see
how well the overall authentication model performs. In order to evaluate our
models longitudinally, we use as test data the features from finger movements
immediately after the training phase (4 flexion/extension combinations from
session 1), and from finger movements collected approximately a week later (at
least 8 flexion/extension combinations from session 2). For session 2, we had
to place the markers on the subject’s fingers a second time. However, we did
not precisely place the markers in the exact same location as during the training
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(a) (b)

Fig. 7. ROC curves for (a) session 1 (immediately after training) of test features for
all subjects, (b) session 2 (∼1 week later) of test features for all subjects.

phase. This allows us to evaluate the performance of our model in a more realistic
setting, longitudinally.

Figure 7(a) shows the performance in session 1 of our models, using the ROC
curve, broken down by subject performance. The point where the ROC curve
meets the dashed line is the operating point of the authentication model where
it reaches EER (lowest error). It can be seen that the accuracy is above the 80%
mark, approaching the dashed line for even the worst performing subjects, with
near-perfect performance on some subject models. The authentication accuracy
is lower in session 2 compared to session 1 as seen in Figure 7(b). This is due
to both the inconsistent placement of the markers as well as the duration of
time since training. The average EER rates for session 1 was 6.3% and session 2
was 16.7%. Even though we present the results in terms of EER, the advantage
of showing the ROC curves is that we can see what happens if we optimize
the thresholds to shift the balance to favor false acceptance or false rejection,
depending on the needs of the system being deployed. In many cases it could be
argued that we minimize false accepts at all costs while tolerating higher false
rejects (i.e., entrance to a secure facility), while for others we do the opposite
(i.e., entrance to a commercial building).

Given these results, we then evaluated which of the two movement types
we used in this work (i.e., coupled PIP-DIP flexion/extension or MCP flex-
ion/extension) worked better during the authentication phase. Figure 8(a) shows
the result in the form of the ROC curve. It can be seen that the overall differ-
ence between the two types of movement was largely nonexistent, with MCP
flexion/extension performed better than coupled PIP-DIP flexion/extension im-
mediately after training, while the latter performed better longitudinally. We
also evaluated which of our two fingers was better in the authentication phase,
given the trained models. As can be seen from the average ROC curves over
all subjects in Figure 8(b), the movement of the middle finger seems better at
identifying a subject than the index finger.

However, overall it is clear that the motion-capture of finger movement and
using fingers to capture the biomechanics of finger movements have the poten-
tial to uniquely identify an individual over time. Furthermore, the ability of the
approach to authenticate based off of unseen test data shows that the system is
effective even over natural variation in joint angles and motions during repeti-
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tion. In the future, we plan to use larger datasets to explore these results in more
detail, develop methods to reduce the longitudinal error rate of the authentica-
tion models, and explore methods for identifying joint centers and angles without
the use of adhesive markers.

(a) (b)

Fig. 8. Average ROC curve over all subjects for PIP-DIP and MCP flexion/extension,
and index finger movement and middle finger movement for: (a) session 1 and (b)
session 2.

5 Related Work

There has been a wide variety of interest in finger related biometrics in recent
years. This includes biometrics based on: keyboard dynamics [13], in-air signa-
tures [4], gestures [16], knuckle pattern [5], and fingerprint [10]. However, all of
these approaches look at either the hand itself or focus on actions performed
by the hand when accomplishing a particular task. They do not focus on the
movement characteristics of the individual fingers, which, as we have shown, are
themselves unique.

In [14] the authors utilize a cyber-glove [1] to measure joint angle changes
while a person manipulates an object as a way to identify a subject. The premise
behind the work is that the way that people handle objects is inherently unique,
and that joint angles can be used to measure the person-object interaction.
In addition to the grasping action other work often also tracks arm movement
during the grasp [11], in addition to image analysis of the hand position during
and after the grasp [6]. Compared to all of these approaches our work operates
based on the biomechanics of the fingers by applying just the movement of the
fingers without the use of any props.

6 Conclusion

In this paper we presented a novel authentication system based on biometrics
derived from the biomechanics of fingers using a marker-based motion-capture
system. Specifically, we focused on the flexion and extension movements of the in-
dex and middle fingers. We built personalized authentication models for subjects
using goniometric and dermatologic features extracted via motion-capture and
evaluated their performance longitudinally. This is a preliminary work intended
to show the viability of this approach. In the future, we plan to extend this work
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in several ways: (1) deploying this system for visually impaired subjects with
different finger sizes, genders, and age groups; (2) perform more stringent secu-
rity analysis where adversaries try to copy a victim’s finger movement; and (3)
explore marker-less methods for capturing finger movement for authentication.
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