Deploying Data-Driven Security Solutions on
Resource-Constrained Wearable IoT Systems

Hang Cai*, Tianlong Yun', Josiah Hester!, Krishna K. Venkatasubramanian*
*Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA
{hcai, kven} @wpi.edu
TDepartment of Computer Science, Dartmouth College, Hanover, NH
{tyun@cs.dartmouth.edu} @cs.dartmouth.edu
School of Computing, Clemson University, Clemson, SC
{jhester@g.clemson.edu } @g.clemson.edu

Abstract—Wearable Internet-of-Things (WIoT) environments
have demonstrated great potential in a broad range of appli-
cations in healthcare and well-being. Security is essential for
WIoT environments. Lack of security in WIoTs not only harms
user privacy, but may also harm the user’s safety. Though
devices in the WIoT can be attacked in many ways, in this
paper we focus on adversaries who mount what we call sensor-
hijacking attacks, which prevent the constituent medical devices
from accurately collecting and reporting the user’s health state
(e.g., reporting old or wrong physiological measurements). In
this paper we outline some of our experiences in implementing a
data-driven security solution for detecting sensor-hijacking attack
on a secure wearable internet-of-things (WIoT) base station
called the Amulet. Given the limited capabilities (computation,
memory, battery power) of the Amulet platform, implementing
such a security solution is quite challenging and presents several
trade-offs with respect to detection accuracy and resources
requirements. We conclude the paper with a list of insights into
what capabilities constrained WIoT platforms should provide
developers so as to make the inclusion of data-driven security
primitives in such systems.

I. INTRODUCTION

Wearable IoT platforms have demonstrated great potential
in a broad range of applications in healthcare and well-
being. Figure |1| shows a typical architecture of a wearable
IoT environment. It consists of various types of low-cost
medical devices (i.e., sensors) that form a distributed wireless
network around the user. These sensors monitor various types
of personal health information from the user and wirelessly
forward them to a base station. The base station is a always-
present, safety-critical WIoT device that is designed to act on
the data received from the sensors, such as perform closed-
loop control of specific ailments that the user may have. It is
designed to have a very long battery-life and also be secure in
terms of apps that it runs. The base station further forwards
the data to a sink entity. The sink is resource-rich device
responsible for providing expensive but non safety-critical op-
erations such as local storage of historical patient information,
visualization tools, and cloud connectivity. Typically the sink
can be implemented on a more generic smartphone or a tablet,
which may not be secure given the eco-system that it may be
a part of.

Security is essential for WIoT environments. Lack of se-
curity in WIoTs not only harms user privacy, but may also
harm the user’s safety. Though devices in the WIoT can be
attacked in many ways, in this paper we focus on adversaries
who mount what we call sensor-hijacking attacks. We define
sensor-hijacking attacks as attacks that prevent sensors from
accurately collecting or reporting their measurements. In this
paper, we focus on the health and wellness applications,

EEG Senso \ \

Respiration Se \ \

Ise Oximetry
Sensor

Wireless/Wearable
Medical devices

Base station Sink entity
Fig. 1: Wearable IoT Environment

where sensor-hijacking attacks typically manifest by prevent-
ing medical devices from correctly gathering or reporting
sensor data about the user’s health state (e.g., reporting old
or wrong physiological measurements). Sensor-hijacking in
WIoT systems presents itself due to vulnerabilities in four
basic areas of the system (each of which has been exploited):
(1) through the communication channel [[1], [2]], (2) through
the software and firmware update process [3]], (3) through the
unprotected sensory-channel [4]], [S] and (4) through direct
physical compromise.

In our efforts we focused on developing an attack-agnostic
way to secure the WIoT systems against sensor-hijacking
attacks. We do this by observing that the goal of any security
solution with respect to WIoT should be to ensure that the user
is protected from harm. This means, that the adversary should
not be allowed to introduce incorrect user state information
into the system such that wrong diagnosis and treatment are
made. Therefore, if we can analyze the data being received
from the sensors we should be able to determine if the data
has been legitimately measured from the user or has been
tampered by someone. In this regard, our work has focused
on detecting attacks on electrocardiogram (ECG) sensors in
WIoT. We focus on ECG sensors for several reasons: (1) they
are one of the most important vital signs collected by a variety
of WIoT; (2) ECG is a representation of the cardiac process,
which is very important to monitor for any user; and (3)
ECG sensors have already been demonstrably compromised
to measure incorrect user state in a variety of contexts [1].

We have developed a novel methodology for detecting
alteration of electrocardiogram (ECG) measurements in a
WIoT device due to sensor-hijacking called SIgnal Feature-
correlation-based Testing (SIFT) [6]. SIFT leverages the
fact that different physiological signals generated by the
same underlying physiological process are inherently related,

i.e., they share similar features among them. For example,
electrocardiogram and arterial blood pressure are different
manifestations of the cardiac process and the two signal time-
series track each other. Consequently, SIFT uses a machine
learning-based model that detects sensor hijacking attacks
on ECG sensors capturing its interrelationship with arterial
blood pressure sensor measurements. So far we have only
validated the performance of our work through simulation
using MATLAB, where it has shown promise [6]. However,
SIFT is designed to be ultimately implemented on the base
station of a WIoT. This is easier said than done because SIFT
uses complex feature extraction and sophisticated machine
learning algorithms, which computationally and memory-wise
expensive.

Consequently, the goal of this paper is to evaluate the
feasibility of implementing the SIFT approach on a WIoT
base station. We utilize the Amulet platform [7]], a wrist-
mounted device, as our base station of choice. We chose
the Amulet as our base station because: (1) it is designed
to be a secure base station for WioT environment, (2) it is
a platform that has strict controls on the apps deployable on
it; (3) it is a low-power device designed to have a battery
lifetime measured in weeks; and (4) it supports multiple
apps executing on it simultaneously. In all, we implemented
three different versions of SIFT by using different feature
extraction algorithms, to deal with the trade-offs between
detection performance and resource consumption. Overall, we
were able to successfully implement the SIFT approach for
ECG sensor-hijacking detection on the Amulet platform with
minimal computational, memory, and battery overhead. Our
analysis shows that we achieved a detection performance
comparable to our gold-standard version on MATLAB. Finally,
we provide some insights into what capabilities, constrained
WIoT platforms should provide developers so as to make the
inclusion of data-driven security primitives on such systems
manageable.

II. PRELIMINARIES

The goal of this paper is to understand the challenges in
implementing and deploying a complex approach for detecting
sensor-hijacking attacks — Slgnal Feature-correlation-based
Testing (SIFT) — on a resource-constrained wearable IoT plat-
form (WIoT). Our platform of choice is the Amulet platform
[7]. Before we proceed to the deployment details, we provide
a short overview of SIFT approach applied to detecting ECG
sensor hijacking attacks, and the Amulet platform including
its capabilities.

A. SIFT for detecting ECG sensor hijacking

There exists several physiological signals that measure the
same underlying physiological process, e.g., electrocardio-
gram, blood pressure, blood volume pulse etc. are measures
of the cardiac process. SIFT approach aims to detect sensor
hijacking attack by leveraging the idea that multiple physio-
logical signals of the same underlying physiological process
are inherently related to each other [6]. In this sense, SIFT uti-
lizes signal-level redundancy to detect attacks, as opposed to
redundancy at the device level, which would require redundant
sensors as part of the WIoT. SIFT’s strategy is particularly
useful in WIoT context as deploying redundant sensors is
not always feasible for wearability and usability reasons.
Specifically, in this paper we focus on using SIFT for detecting
the hijacking of ECG sensors and the resulting measurement

alterations by using arterial blood pressure (ABP) as reference.
We assume that the ABP signal is trustworthy and cannot be
tampered by adversaries. Therefore, any unilateral change in
ECG signal can be detected. Figure [2[shows an overview of
SIFT for detecting ECG sensor hijacking. SIFT has three steps,
which we describe below.

Feature Extraction

A sec.
ECG from
Patient 1

=
s
El
EX

3

Negative
Feature
Point

Feature
Extraction

Learning
A sec. Model
ABP from

Patient 1

ettt

1

1 A sec.

I | ECG from
Patient N

Unclassified

T
w sec. ECG

snippet from
Patient 1

Synchronous measurement

Machine
bl Learning H
Classifier

Alarm

Feature Positive
Portrait Extraction FeaFure
Points

Synchronous
measurement

Evraction
w sec. ABP

snippet from
Patient 1

Fig. 2: Detecting Alterations of ECG Sensor Measurements

Feature Extraction: In the feature extraction step, w time-
units synchronously measured ECG and ABP signals are first
transformed into a two-dimensional normalized form called
a portrait. The portrait captures the shape of the ECG and
ABP signals measured in tandem. Let a(t) and e(t) be the
normalized ABP and ECG signals at time ¢, where 0 < ¢ < w.
Then a 2-dimensional portrait P is generated through the
function f(t) = (a(t),e(t)). Once the portrait is built, we
extract a total of eight features from it. We categorize these
eight features into two classes: matrix features and geometric
features. Matrix features are generated based on viewing the
portrait as an n X n grid and counting the number of points
from the portrait that fall into each element in the grid.
Formally, we view the grid as a n x n matrix, C, in which each
element ¢(4,7) is the number of points in the corresponding
grid element (,7), where 4,5 < n. We chose n = 50 for
generating the matrix C. Geometric features, on the other
hand, describe the absolute and relative location of certain
characteristic points (like R peaks in ECG and Systolic peaks
in ABP) of the signals in the portrait. Table [] shows the 8
features that are used and described in [6].

TABLE I: Original Feature Summary

Type Feature
Matrix Spatial Filling iAndex of matrix C' i A

Features Standard deviation of column averages of the matrix C'
Area Under the Curve (AUC) formed by the matrix
C' column averages
Average of the angles between R peaks on the portrait

G tric Average of the angles between Systolic peaks on the portrait

Features Average distance between R peaks and the Origin on the portrait
Average distance between Systolic peaks and
the Origin in the portrait
Average distance between R peaks and the corresponding
Systolic peaks in the portrait

Training step: The next step is the training step where we
build a user-specific model for the wearer of the WIoT. In this
regard, we collect A time-units of synchronously measured

ECG and ABP signals from the user for whom we are training
our model. The feature extraction for the negative class points
is done by a sliding window of size w < A, over the time-
series of the ECG and ABP signals. Each w time-units window
of data produces one portrait, and one 8-dimensional feature
point is then generated from this portrait. We categorize our
feature points into two classes, positive and negative. The
negative class feature are obtained from portraits obtained
from A time-units of ECG and ABP signals from the user.
On the other hand, the positive class points are generated
using portraits from A time-units of the wearer’s ABP and
ECG belonging to several different users, and then extracting
8-dimensional features by sliding a window of size w over
the time-series. We use Support Vector Machine (SVM) as
the machine learning algorithm of choice for training the user-
specific model. We chose SVM as it performed the best among
the algorithms we tried. Further, it is also well-understood and
has excellent tool support [6].

Detetction step: Once the model is trained for a particular
user, then it can decide if any newly received snippet of ECG
measurements have been maliciously altered. For every newly
received w time-units ECG and ABP signals from the user,
it generates a portrait and extracts the 8-dimensional feature
point from this portrait. Then, this feature point is fed into
the user-specific model. The model will then output a positive
or negative label for this feature point. If the feature point is
deemed to be positive, then this w second ECG signal snippet
is considered to be altered and an alert will be generated.

B. Amulet platform

We briefly introduce the Amulet platform [7] on which we
deployed our SIFT detector. Currently, the Amulet platform
consists of a prototype device in a smart watch form fac-
tor with operating system and toolchain support, for energy
efficient applications. We selected Amulet platform as our
platform as it meets several requirements of a base station.
(1) The Amulet platform allows multiple applications from
different third party developers to be deployed on the same
device. (2) It runs a secure operating system called Amulet OS.
The Amulet OS provides capabilities for isolating applications
from each other and from the system, which protects sensitive
user information (such as health data) and prevents applica-
tions from interfering with the system or other applications. (3)
It is designed to operate in a resource-constrained environment
and has a small footprint, which allows it to operate for weeks
without recharging. (4) It comes with an OS and associated
tool-chain that provide compile-time predictive analysis of
resource usage, including energy and memory.

Currently, the Amulet wearable prototype is mostly a
single-board system. It comes with a main board, bat-
tery, haptic buzzer, and secondary storage board are all
housed in a custom-designed 3D-printed case that fits a
standard 22mm off-the-shelf watchband. Texas Instruments
(TT) MSP430FR5989 micro-controller with 2 KB of SRAM
and 128 KB of integrated FRAM serves as the main computa-
tional device. The wearable is equipped with internal sensors
for use by developers: an Analog Devices (AD) ADMP510
microphone, an Avago Tech APDS-9008 light sensor, a TI
TMP20 temperature sensor, an STMicroelectronics L3GD20H
gyroscope and an AD ADXL362 accelerometer.

AmuletOS is implemented on top of the QM event-based
programming framework [8]]. It provides a low-power, event-
driven programming model, an API, and efficient app isola-

tion and optimization through compile-time techniques. Each
application is represented as a state machine with memory.
Therefore, there are no processes or threads, all application
code runs to completion without context-switching overhead.
App code, state, and variables are kept in persistent storage.
Applications are written in a custom variant of C that removes
many of C riskier features: access to arbitrary memory lo-
cations (pointers), arbitrary control flows (goto statements),
recursive function calls, and in-line assembly. Array access
in C is implemented using equivalent pointer operations,
however, in AmuletOS, the array syntax is modified so that
arrays can be passed to functions explicitly by reference (not as
pointers). Furthermore, arrays also have an associated length
that allows for run-time bounds checking whenever access
behaviors cannot be adequately checked statically.

Each Amulet application includes: (1) a state machine, (2)
event handlers (written in Amulet version of C), and (3)
attributes specifying the app global variables. The QM frame-
work combines application information into XML-formatted
QM files. Amulet Firmware Toolchain translates the Amulet
version of C code to safe C code using a modified C grammar
and ensures that array and other memory accesses are valid,
that problematic integer operations do not occur (e.g., division
by zero), and that programming techniques such as recursion,
goto statements, and pointers are not employed. After these
steps, applications are merged together in a single QM file,
which is then converted to C using QM. This code is compiled
and linked using Texas Instrument open-source GCC for
MSP430. This firmware image can then be installed onto the
application chip (MSP430) of Amulet platform.

III. IMPLEMENTING SIFT APPROACH ON AMULET
PLATFORM

In this section, we give a detailed description of the im-
plementation of our detector on the Amulet platform. The
goal of the implementation is two fold. (1) demonstrate the
feasibility of our detector, a complex data-driven application,
on a resource-constrained wearable IoT system, and (2) help
improve the design of Amulet to facilitate more diverse,
sophisticated applications.

Given that the Amulet platform is a low-capability system,
we implemented three versions of the detector with different
memory and energy overhead by using the QP framework. We
call these three versions as: (1) Original version, which was
the full implementation of the detector, as described in the
previous section; (2) Simplified version, which simplified the
feature extraction algorithms so that it did not utilize the stan-
dard C math library; (3) Reduced version, which implemented
only the geometric features as part of its feature extraction
algorithm. There are several reasons for us to implement the
three versions of our detector: (1) To establish the effectiveness
of our detector on resource-constrained WIoT platforms. (2)
To accomodate the possibility of adaptive security in WIoT,
where we can switch between different versions of the detector
depending upon available computational resources.

We use QM event-based programming framework to de-
velop our detector, and each version of our detector consists of
three states: (1) PeaksDataCheck state; (2) FeatureExtraction
state; (3) and MLClassifier state. Only the Peaks Check state
is the same across all the three versions of our detector, while
FeatureExtraction state and MLClassifier state are different
across all the three versions. We now describe each of the
the states.

PeaksDataCheck State: is responsible for fetching ECG
and ABP data snippets from the memory that Amulet platform
received every w = 3 seconds and then displaying them on
the LED screen. In our current implementation, we pre-stored
ECG and ABP data and their corresponding peak indexes
into the memory of the Amulet platform for ease of testing.
It is a simple extension to perform these tasks at run-time
based on live data. Once the PeaksDataCheck state is done,
the 3 seconds ECG and ABP snippets are transmitted to the
FeatureExtraction state, which is described below.

FeatureExtraction State: We customized the feature ex-
traction algorithm for each version of our detector. The origi-
nal feature extraction algorithm is a full implementation which
is described in Section The reduced feature extraction
algorithm only uses the geometric features from the simplified
case. Consequently, we focus on the simplified case in our
description of the feature extraction state.

In the simplified case, all three matrix features are generated
based on the matrix C. The calculation of the Spatial Filling
Index feature is the same in both simplified and original
case. For the remaining two matrix features, we simplified
the way that we generated them. Instead of calculating the
standard deviation of column averages of matrix C, we use
the variance of column averages of matrix C, which avoids
using the square root computation. Further, to compute the
AUC of the column averages in matrix C, we originally
performed numerical integration via the trapezoidal method.
To implement this in C code, we simplified the process and

used the equation ff f@)de = 52 SO (F(en) + f(@ni1))
to calculate the the integral of the curve formed by the the
column averages of matrix C.

For geometric features, instead of calculating the angles
and the distance for the characteristic points on the portrait,
we used the slope and the square of the distance as the
features. Consequently, our five new features in the simplified
case are: (i) Average of the slope for the R peaks, given by
Ly Z: , where (x,,y,) denotes R peaks in a portrait.
(ii) Average of the slope for the Systolic peaks, given by
D Ysi where (x,ys) denotes Systolic peaks in a por-

T,

trait. (iii) Average squared distance between R peaks and the
origin, given by L 3" (22 4 y2). (iv) Average squared
distance between Systolic peaks and the origin, given by
LS (@2 + y2). (V) Average squared distance between
R peaks and the corresponding Systolic peaks, given by
LS (@,)24 (g, s,)2, where (. s,) denotes the
corresponding systolic peak for a R peak (z,,, y,,). Above, m
denotes the total number of R peaks in a portrait and n denotes
the total number of Systolic peaks in a portrait.
MLClassifier State: As described in Section to build
each user-specific model, we fed a set of positive and negative
feature points into the SVM classifier with a linear kernel for
training purpose. Once the offline training phase is done, we
then translate the prediction function of the trained model into
C code and implemented the MLClassifier state. Note that
each version of the detector has a different feature extraction
algorithm, which results in a different set of positive and
negative points that are used to train the machine learning
model. Thus, for a given user, the MLClassifier are different
across all the three versions of detector. The MLClassifier
state, therefore, uses a learned user-specific model to predict
the label of the generated feature point, which is the output of
the FeatureExtraction state. If the label is positive, then it will

generate an alert on the LED screen of the Amulet platform.

IV. PERFORMANCE & RESULTS

In this section, we evaluate the performance of our three
versions of our detector on the Amulet platform in detecting
ECG sensor hijacking attack that result in the alteration of
the ECG measurements. We evaluate our approach w.r.t. two
aspects: (1) the performance of our detector in detecting ECG
measurement alteration attack with respect to our analysis
results on MATLAB; (2) the memory consumption and the
battery lifetime of the detector, when implemented on the
Amulet platform. All three versions of SIFT achieve above
86% accuracy rate in detecting the malicious alteration of the
ECG measurements, while consuming minimal memory and
energy.

Dataset: In order to train and test our model, we used data
belonging to 12 users from the MIT PhysioBank Fantasia
database [9]. We chose these particular subjects from these
databases because the availability of both ECG and ABP
signals for them. The average age of our users was 46.5
years (with a standard deviation of of 25.5 years). We chose
these particular users because of the availability of both ECG
and ABP signals for them. We simulated ECG measurement
alteration due to sensor hijacking by replacing a user’s ECG
with someone else’s.

Metrics: We use the following metrics to train for our
validation: false positive rate, false negative rate and accuracy
rate. We define false positive rate (FP) as the fraction of
the cases in which an unaltered ECG sensor measurement is
misclassified as altered. Similarly, we define false negative rate
(FN) as the fraction of the cases where an altered ECG sensor
measurement is misclassified as unaltered. Finally, accuracy
rate is the fraction of the cases where an altered or unaltered
ECG sensor measurement is classified as such.

A. Performance Analysis

In order to evaluate our detector, for each subject from
our dataset, we trained a user-specific model using original,
reduced, or simplified features and SVM as our classifier or
choice. we chose training time to be 20 minutes as it works
best for us based on our original work as shown in [6]]. The
training is done offline and therefore, need not be done on
amulet platform itself. Once the models were trained, we then
loaded each of them on the amulet platform as an app for
evaluation.

In order to simulate the reception of both altered and
unaltered ECG measurements at the Amulet platform, we
pre-stored 2 minutes of unseen ECG and ABP signals and
their peaks indexes into the memory. By unseen ECG and
ABP snippets we mean measurement that were not used
for training our model. Within these 2 minutes of unseen
ECG measurements, about 1 minute worth (i.e., 50%) of
measurement were altered by replacing it with someone else’s
ECG snippets. The alteration was done in random locations
within the 2 minute snippet. As our detector only need 3
seconds of ECG and ABP snippets to generate alerts, we ended
up with 40 test examples in total for each subject. The detector
app then fetches 3 seconds worth of unclassified ECG and
ABP snippets from our 2 minute-long test data-set for a given
subject, extracts features from it and then uses the trained
SVM model to identify if the 3 seconds ECG snippet has
been altered or not.

Zyp Resource Profiler

. DONE Done,
'~

o 20x 357518 pJ 20¢ 42126 pJ
Initial
opJ

(e R eatureExtraction)

MLClassifier °
.

Fig. 3: Resource Consumption of SIFT app

Table [l shows the comparison of three versions of detector
implemented on Amulet platform along with the results for
our MATLAB implementation, which forms the gold-standard
of the detector. We can see that our original version of the
detector reaches 93.06% accuracy, which is very close to
the MATLAB implementation. For the simplified version of
the detector, the detection accuracy only drops 0.2% for our
implementation. This indicates that our simplified features
are a good approximation of the original features. However,
there is a bigger decrease in detection accuracy when we
used the reduced version of the detector. This is simply a
function of the fact that we are only using a portion of the
features in the reduced cases. Furthermore, we can see that
our app implemented on Amulet platform performs as well
as or even slightly better than the simulation on MATLAB,
which demonstrates that our implementation is accurate.

TABLE 1I: Performance Evaluation for Three Versions of
Detector

Version Platform | Avg. FP | Avg. FN | Avg. Acc | Avg. F
Original Amulet 0.83% 12.50% 93.06% 92.77%
MATLAB 5.83% 10.23% 91.97% 91.97%
Simplified Amulet 6.67% 7.58% 92.86% 93.43%
MATLAB 5.00% 12.88% 91.06% 90.28%
Reduced Amulet 12.08% 15.15% 86.31% 87.10%
MATLAB | 22.08% 14.39% 81.76% 84.04%

B. Energy Analysis

To evaluate the resource usage of three versions of the detec-
tor app, we used the Amulet Resource Profiler front end, ARP-
view, to gain insight into the energy and memory efficiency of
our SIFT detectors. ARP-view presents developers a graphical
view of the resource profile and sliders that allow them to see
the battery-life impact when they adjust application parame-
ters. ARP-view leverages the Amulet Resource Profiler’s fine-
grained data about the structure and behavior of applications.
Amulet Resource Profiler captures information about each
app’s code space and memory requirements, using a combi-
nation of compiler tools and static analysis. To profile energy,
Amulet Resource Profiler builds a parameterized model of the
app’s energy consumption. Fig [3| shows a snapshot example
of the resource consumption of original version of detector

IF1 score can be interpreted as a weighted average of the precision (the
number of true positives divided by the total number of elements labeled
as belonging to the positive class) and recall (the number of true positives
divided by the total number of elements that actually belong to the positive
class).

app. Table [[II| shows the memory usage and expected lifetime
with the 110mAh battery for three versions of detector apps.
We can see that the simplified version consumes 16% less
memory than the original version for the detector alone with
a nominal reduction in system memory usage. The reduced
version, on the other hand, consumes almost 50% less memory
than the other original version for the detector. In terms of the
expected lifetime, the reduced version of our detector lasts the
longest among the three versions, where the expected lifetime
is 55 days compared to the original and simplified models
which have about half the lifetime. Overall, it can be seen that
we were quite successful in implementing our complex data-
driven detectors on a limited capability Amulet base station in
our WIoT environment.

TABLE III: Resource Usage of Three Versions of Detector

Version Resource Type Measurements
Memory Use (FRAM) 77.03 KBsystem + 4.79 KBetector
Original Max Ram Use (SRAM) 696 Bsystem + 259 Baetector
Expected Lifetime 23 days
Memory Use (FRAM) 71.58 KBsystem + 4.02 KBetector
Simplified | Max Ram Use (SRAM) 694 Bsysiem + 259 Betector
Expected Lifetime 26 days
Memory Use (FRAM) 56.29 KBsystem + 2.56 KBetector
Reduced Max Ram Use (SRAM) 694 Bsystem + 69 Baetector
Expected Lifetime 55 days

V. EXPERIENCES & INSIGHTS

One of the main goals of this work was to implement
our detector on low capability WIoT platforms and suggest
potential improvements to developers of such platforms based
on our experiences. In this section we list some of the main
insights and suggestions for the WIoT platforms when it
comes to implementing data-driven, complex security “apps”
on them.

Insight #1: Have efficient sensor data pipelines: Many
wearable systems require their sensors to continuously mea-
sure the user’s various physiological signals at a high sampling
rate and transmit the measured data to the base station for
processing. Further, many apps on WIoT base station may
need to initialize and use large sized arrays. However, the
resource-constrained base station in the WioT environment
may have small non-volatile memory available (e.g., 128KB
for the Amulet), which presents a considerable impediment to
designing sensor-data rich apps. For instance, to be able to
execute our detection algorithm, the 3 seconds ECG and ABP
data had to be stored into two floating type arrays (each has a
size of 1080) temporarily in the memory. One major problem
we encountered with the Amulet platform was that it does not
allow large array size nor did it support 2D arrays. Further, the
QM software did not provide the functionality of initializing a
global array. One possible solution is to this problem is to use
in-built SD card on base station. However, this solution will
negatively impact both the energy consumption and I/O delays.
Another possible solution is performing the feature extraction
on sensors. Therefore, the data stream transmitted to base
station are features, which are compressed form of the raw data
[10]. However, this solution requires the physiological sensor
has the ability to process the data, which may not be possible.
Consequently, efficient sensor data pipeline and management
needs to be provided by the WIoT base station platform so
that we may carefully buffer real-time sensor measurements
and allocate appropriate memory for it.

Insight #2: Provide basic data processing capabilities:
The main focus of low capability WIoT platforms is often to
process the sensor data, and give a decision to the user (such
as fall detection, security breach alerts, etc.). In the Amulet
platform, many basic data processing capabilities were not
available, often for security reasons, which makes it very hard
to develop apps like ours. For instance, we wrote our own
APIs for the AmuletOS that convert the string to float, float
to string. In addition, data-driven based solutions like ours are
heavy users of mathematical operations. Earlier versions of the
Amulet platform did not support C math library nor provide
any kind of math APIs, which made our task very difficult.
Further, with the Amulet platform we also faced the problem
that the mathematical operation between array elements were
often calculated incorrectly. To solve this problem, we first
stored the value of the array into a temporary variable. Then,
instead of directly using the array to do the calculation, we use
this temporary variable to do the calculation, which was very
inefficient. Consequently, the operating systems that runs on
such WIoT base station needs to provide built-in support for
FFT or audio processing API, mathematical operations, and
simplifying display of formatted number strings.

Insight #3: Provide efficient debugging tools: Implement-
ing complex apps on WIoT platform requires that we are
able to debug them effectively. The lack of good debugging
tools seriously reduces the efficacy of the app developer.
For instance, to debug the application code for Amulet, one
can either use GDB or manually use the provided API to
show the variable values on the LED display. The current
debug mode (GDB) for Amulet is unstable, and it got crashed
very frequently. In our implementation, we had to use the
second method to debug. However, this proved to be very
inefficient as to be able to see the value on the LED screen
one had to compile the code and repeatedly flash it into the
Amulet. Consequently, platform developers need to provide
good debugging tools, for instance, showing the resource
consumption of the application, showing where and how the
sensor data is being transformed, providing a desktop based
simulator that emulates the screen writing.

Insight #4: Enable adaptive security in WloT: Unlike
the traditional mobile computing devices (such as smart-
phone), resource-constrained Wearable IoT base station like
the Amulet have limited capabilities such as computational
power, memory space and battery power. To accommodate
the diversity in hardware and software of the low-capability
WIoT platforms, we developed three different versions of
SIFT. However, currently only one version of SIFT is manually
flashed into the Amulet device. This is not really practical
because: (1) the decision of deploying which version of SIFT
has to be made beforehand; (2) the computational resource
availability changes overtime, and the Amulet device has to
be flashed every time when switching to another version of
SIFT is needed. Thus, we envision an adaptive security model
with the ability to automatically adjust the security level by
switching between different versions of one security app based
on the available resources. This model considers two types
of resource constraints: 1) static constraints, which exists
in the compile time, such as the memory, available library,
available API and etc. 2) dynamic constraints, which exists in
the runtime, such as the memory, CPU cycle, battery power
and etc. The core of this model is a decision engine, which can
automatically detect any types of constraints during compile
time and runtime, and decide which version of security app to

run based on the detected resource constraints. Therefore, in
our future work, there are essentially two questions that need
to be answered: (1) How to detect the static and dynamic
constraints during compile time and run time, respectively?
(2) Based on the detected resource constraints, how to decide
which version of the security app to switch to? The answer to
these two questions will require that the WIoT base station
be capable of providing information about it’s energy and
computational state to the app at runtime.

VI. CONCLUSION

In this paper we presented our experiences while im-
plementing a data-driven security solution, SIgnal Feature-
correlation-based Testing (SIFT), for detecting electrocardio-
gram sensor-hijack attack on a constrained wearable internet-
of-things (WIoT) platform called the Amulet. We showed
the inherent trade-offs between the performance and detection
accuracy that we had to navigate during the implementation.
To deal with this trade-off, we totally developed three different
versions of our detector. We demonstrated that each version of
our detector could be implemented on a constrained wearable
platform (Amulet), was energy efficient, and was accurate.
We believe that the challenges and trade-offs we faced are
generalizable to the realization of other complex security
solutions in resource-constrained WIoT environments. In this
regard, we provided some insights into the capabilities that
the WIoT systems should provide developers to make the
inclusion of data-driven security solutions easier.

ACKNOWLEDGEMENTS

We would like to thank David Kotz and Ron Peterson from
Dartmouth College, Jacob Sorber from Clemson University,
along with Alex Witt, and Ahmad Moghimi from Worcester
Polytechnic Institute who helped us with this work.

REFERENCES

[1] D. Halperin, T. Kohno, T. Heydt-Benjamin, K. Fu, and W. Maisel, “Secu-
rity and privacy for implantable medical devices,” Pervasive Computing,
IEEE, vol. 7, no. 1, pp. 30-39, Jan 2008.

[2] Dan Goodlin, “Insulin pump hack delivers fatal dosage over the air,”
http://www.theregister.co.uk/2011/10/27/fatal_insulin_pump_attack/,
October 2011.

[3] “Advisory (ICSA-15-090-03), Hospira MedNet Vulnerabilities,” https:
/fics-cert.us-cert.gov/advisories/ICSA-15-090-03.

[4] N. Brown, N. Patel, P. Plenefisch, A. Moghimi, T. Eisenbarth, C. Shue,
and K. K. Venkatasubramanian, “Scream: Sensory channel remote
execution attack methods,” in Usenix Security Symposium, August 2016.

[5] D. Foo Kune, J. Backes, S. S. Clark, D. B. Kramer, M. R. Reynolds,
K. Fu, Y. Kim, and W. Xu, “Ghost Talk: Mitigating EMI signal injection
attacks against analog sensors,” in Proceedings of the 34th Annual IEEE
Symposium on Security and Privacy, May 2013. [Online]. Available:
https://spgr.eecs.umich.edu/papers/fookune-emi-oakland13.pdf

[6] H. Cai and K. K. Venkatasubramanian, “Detecting signal injection
attack-based morphological alterations of ecg measurements,” in Dis-
tributed Computing in Sensor Systems (DCOSS), 2016 International
Conference on. Springer, 2016.

[7]1 J. Hester, T. Peters, T. Yun, R. Peterson, J. Skinner, B. Golla, K. Storer,
S. Hearndon, K. Freeman, S. Lord, R. Halter, D. Kotz, and J. Sorber,
“Amulet: An energy-efficient, multi-application wearable platform,” in
Proceedings of the 14th ACM Conference on Embedded Network Sensor
Systems CD-ROM, ser. SenSys ’16, 2016, pp. 216-229.

[8] L. Quantum Leaps. Qp/c framework. [Online]. Available:
/Iwww.state-machine.com

[9]1 A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C.

Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.

Stanley, “Physiobank, physiotoolkit, and physionet: Components of a

new research resource for complex physiologic signals,” Circulation,

vol. 101, no. 23, pp. e215-e220, 2000.

K. Lorincz, B.-r. Chen, G. W. Challen, A. R. Chowdhury, S. Patel,

P. Bonato, M. Welsh et al., “Mercury: a wearable sensor network

platform for high-fidelity motion analysis.” in SenSys, vol. 9, 2009, pp.

183-196.

http:

[10]

https://ics-cert.us-cert.gov/advisories/ICSA-15-090-03
https://ics-cert.us-cert.gov/advisories/ICSA-15-090-03
https://spqr.eecs.umich.edu/papers/fookune-emi-oakland13.pdf
http://www.state-machine.com
http://www.state-machine.com

	Introduction
	Preliminaries
	SIFT for detecting ECG sensor hijacking
	Amulet platform

	Implementing SIFT Approach on Amulet platform
	Performance & Results
	Performance Analysis
	Energy Analysis

	Experiences & Insights
	Conclusion
	References

