Detecting Interoperability Failures in Interoperable
Medical Device Systems

Krishna K. Venkatasubramanian*, Jin-Hyun Kim®, Oleg Sokolsky', Vasiliki Sfyrla’, Eugene Vasserman$, Insup Leef
*Worcester Polytechnic Institute, kven@wpi.edu
University of Pennsylvania, {jinhyun,sokolsky,lee}@cis.upenn.edu
tUnafiliated, vasiliki.sfyrla@gmail.com
§Kansas State University, eyv@ksu.edu

Abstract—This paper addresses the problem of high-assurance
operation for medical cyber-physical systems built from interop-
erable medical devices. Such systems are different from most
cyber-physical systems due to their plug-and-play nature: they
are assembled as needed at a patients bedside according to a
specification that captures the clinical scenario and required
device types. Due to the integration of disparate medical devices,
at patient-side, such interoperable medical device systems (IMDS)
are prone to interoperability failures. We define interoperability
failures as the observance of unsafe behaviors within the IMDS
despite the fact that all individual components in the IMDS are
working as expected. In this work we provide an overview of the
importance of detecting interoperability failures and our overall
approach to detecting such failures once they are assembled on-
demand at run-time.

I. INTRODUCTION

Interoperable medical device systems (IMDS) are med-
ical cyber-physical systems that can integrate information
from multiple clinical sources in a context-sensitive way to
guide patient care or prevent common critical mistakes [9].
IMDS are essentially dynamically composed cyber-physical
systems. They are fundamentally different from the tradi-
tional statically-composed systems (e.g., automotive or avionic
systems) and architectures (e.g., integrated modular avionics
[11]), where the constituent hardware and software entities
(and their platforms) are known at design time and do not
change over the life-time of the system. On the other hand
every instance of IMDS can be different. IMDS typically
consists of two main entities: medical devices involved in the
treatment of patients and controller applications (henceforth
referred to as (medical apps) that coordinate these devices.
The medical apps run on a middleware coordinator platform
that consists of a routing agent called the network controller
and an app execution environment called the supervisor. The
coordinator provides the infrastructure to enable the medical
devices to work together to provide patient care as defined by
the app.

The work thus far in implementing interoperability of med-
ical devices has focused on functional interoperability, that is,
making devices coordinate despite the differences in the app’s
expectations and the device platform’s capabilities with focus
on regulatory issues [5] and safety analysis of plug-and-play
medical systems [8], [2], [1]. Efforts in the standards commu-

nity such as ASTM2761 [3], MDPnP [10], and Continua [4],
and 11073 [7] are also trying to address this problem. In this
work, we are focusing on a complementary issue. We want to
move from the more “traditional” functional interoperability
to enabling fault-tolerance during the interoperability.

The current regulatory regime requires us to view systems
of interconnected devices that collaborate, as a single medical
device and assure its safety as a whole [5]. As with any
device or system, safety assurance requires us to demonstrate
the following two goals: (1) the operation of the system is
safe in the nominal operating mode, i.e., in the absence of
any faults, and that (2) any faults that may take the system
outside of the nominal operation are detected and properly
reported to the system operator (in this case, clinician or
clinical engineer). The first of these goals is performed by
analyzing the medical apps for compliance with the clinical
scenario and is outside the scope of this paper. The second goal
implies that the dynamically composed medical systems have
to be capable of detecting and locating emergent operational
failures at run-time. Though operational failures can occur for
many reasons in IMDS, in this work, we focus particularly on
interoperability failures.

II. INTEROPERABILITY FAILURES IN IMDS

We define interoperability failures in IMDS as the obser-
vance of unsafe behaviors within the IMDS despite the fact
that all individual components in the IMDS are working as
expected. Typically such failures occur due to mismatch of
assumptions between the various components in the IMDS.

Example: Imagine a closed-loop patient controlled
analgesia system, where a patient is given pain
medication using an infusion pump. Based on their
current blood oxygen levels, the volume of the med-
ication infused is continuously and automatically
controlled by a specifically designed controller app.
The controller app issues a ticket to infusion pump
to allow infusion to happen for a specific time-
interval. Now, as app developer and the infusion
pump manufacturer may not be the same entity,
they might have differing assumptions about how
the other operates. Therefore the app may assume
that anytime it issues an infusion ticket, the infusion



pump has no active infusion ticket on it. However,
the infusion pump may have no such assumptions.
Therefore, if it receives a new ticket when an old
one is still active, it may just simply add on the
duration of the new ticket to the remaining duration
of the currently active ticket (or even override the
original ticket) and keep infusing for unsafe duration
of time. Here, none of the individual IMDS compo-
nents failed, but an unsafe over-infusion occurred
anyway. Interoperability failures occur in a manner
that is undetectable within the IMDS’ exception
handling infrastructure and require a global view of
the operation of the IMDS instance. l

Leveson et al. have tackled interoperability failures in the
context of statically composed systems [6]. We believe that
our work is complementary to that of Leveson’s work and
in some instance goes beyond the assumptions of her work.
If we were dealing with statically composed systems, we can
easily use STPA to identify and address interoperability issues.
With IMDS, we are dealing with dynamically composed
systems whose base components, i.e., medical devices and
controller app are not known until deployment time. This
means, knowledge of interoperability failures is not sufficient
to prevent their occurrence, we need to leverage the knowledge
of interoperability failures and build monitors to detect their
occurrence while the IMDS is operational. Our aim in this
project is to develop techniques to automate the process for
detecting interoperability failures in such dynamically com-
posed IMDS.

III. APPROACH FOR DETECTING INTEROPERABILITY
FAILURES IN IMDS

The on-demand nature of IMDS imposes difficulties in the
ensuring fault-tolerance as we do not know the environment
of deployment (i.e., medical devices and medical apps). In
this regard, we take a specification-based simultaneous top-
down, bottom-up approach to detect interoperability failures
in IMDS. Our approach consists of the follow three building
parts:

1. To develop the interoperability failure model, we start
with a verification of the app (controller + device models)
using assume-guarantee reasoning, and prove that the whole
app is safe as long as the assumptions are satisfied. This
would ensure that the assumptions are sufficient and nothing
important is missed. As these assumptions would have to be
monitored, they provide us with a blueprint that describes the
interoperability failures that are of interest to us and therefore
need to be detected.

2. Given the failure model we derive high-level monitor
logic for detecting potential interoperability failures in the
IMDS. However, the monitor logic is a high-level represen-
tation of interoperability failures that is independent of the
individual medical devices and the app used in the IMDS.
For the monitor logic to detect interoperability failures, we
need have knowledge of the current internal state of the IMDS
components. For this we utilize low-level platform-specific

detectors that output the state of the medical devices in the
IMDS and the controller app. In this part of the work, our aim
is to provide guidance for the device manufacturers and the
app developers so that they can expose appropriate the internal
states of the their respective device and app, by adding hooks
on their software.

3. Given high-level monitor logic and the platform-specific
detectors, we can take the output of the detectors and combine
them with the monitor logic to detect interoperability failures.
However, since the monitor logic and the platform-specific
detectors may not be located on the same entity and may
communicate over the network, i.e., they are distributed, we
need to ensure that the detection of interoperability failures
does not suffer during the operation of the IMDS, despite
issues such as lack of universal clock or network loss/delay.

IV. CONCLUSIONS

The medical device industry is undergoing a rapid trans-
formation, embracing the potential of embedded software and
network connectivity. Instead of stand-alone devices that can
be designed, certified, and used independently of each other to
treat patients, we are facing a near future with distributed sys-
tems that simultaneously monitor and control multiple aspects
of the patient’s physiology. In this work we are focused on the
detection of interoperability failures in IMDS. We provided a
definition of interoperability failures, their importance in the
IMDS context and our overall approach to detecting them at
run-time.

REFERENCES

[1] D. Arney, J. M. Goldman, S. F. Whitehead, and I. Lee. Synchronizing
an x-ray and anesthesia machine ventilator: A medical device interop-
erability case study. 2009.

[2] D. Arney, R. Jetley, P. Jones, I. Lee, and O. Sokolsky. Formal
methods based development of a PCA infusion pump reference model:
Generic infusion pump (GIP) project. In High Confidence Medical
Devices, Software, and Systems and Medical Device Plug-and-Play
Interoperability, 2007. HCMDSS-MDPnP. Joint Workshop on, pages 23—
33. IEEE, 2007.

[3] Medical devices and medical systems — Essential safety requirements
for equipment comprising the patient-centric integrated clinical en-
vironment (ICE). http://enterprise.astm.org/filtrexx40.cgi?+REDLINE_
PAGES/F2761.htm.

[4] R. Carroll, R. Cnossen, M. Schnell, and D. Simons. Continua: An
interoperable personal healthcare ecosystem. Pervasive Computing,
IEEE, 6(4):90-94, 2007.

[5] J. Hatcliff, E. Vasserman, S. Weininger, and J. Goldman. An overview
of regulatory and trust issues for the integrated clinical environment.
Proceedings of HCMDSS 2011, 2011.

[6] T. Ishimatsu, N. G. Leveson, J. Thomas, M. Katahira, Y. Miyamoto, and
H. Nakao. Modeling and hazard analysis using stpa. 2010.

[7]1 ISO/IEEE 11073 Committee. http://standards.ieee.org/findstds/standard/
11073-10103-2012.html.

[8] C. Kim, M. Sun, S. Mohan, H. Yun, L. Sha, and T. F. Abdelzaher.
A framework for the safe interoperability of medical devices in the
presence of network failures. In Proceedings of the 1st ACM/IEEE
International Conference on Cyber-Physical Systems, pages 149-158.
ACM, 2010.

[9]1 K. Lesh, S. Weininger, J. Goldman, B. Wilson, and G. Himes. Medical
device interoperability-assessing the environment. In HCMDSS-MDPnP,
2007.

[10] Medical device “plug-and-play” interoperability program. http://mdpnp.
org/, 2008.

[11] P.J. Prisaznuk. ARINC 653 role in integrated modular avionics (IMA).
In IEEE/AIAA Digital Avionics Systems Conference (DASC), 2008.



