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Abstract

Recent years have seen the emergence of wearable medical systems (WMS) that have demonstrated great promise
for improved health monitoring and overall well-being. Ensuring that these WMS accurately monitor a user’s current
health state is crucial. This is especially true in the presence of adversaries who want to mount datamanipulation
attacks on the WMS. The goal of data manipulation attacks is to alter the measurements made by the sensors in the
WMS with fictitious data that is plausible but not accurate. Such attacks force clinicians or any decision support system
AI, analyzing the WMS data, to make incorrect diagnosis and treatment decisions about the patient’s health.
In this paper, we present an approach to detect data manipulation attacks based on the idea that multiple
physiological signals based on the same underlying physiological process (e.g., cardiac process) are inherently related
to each other. We capture the commonalities between a “target” sensor measurement and another “reference” sensor
measurement (which is trustworthy), by building an image reconstruction-based classifier and using this classifier to
identify any unilateral changes in the target sensor measurements. This classifier is user-specific and needs to be
created for every user on whom the WMS is deployed. In order to showcase our idea, we present a case study where
we detect data manipulation attacks on electrocardiogram (ECG) sensor measurements in aWMS using blood pressure
measurement as reference. We chose ECG and blood pressure—in arterial blood pressure (ABP) form—because both
are some of the most commonly measured physiological signals in a WMS environment. Our approach demonstrates
promising results with above 98% accuracy in detecting even subtle ECG alterations for both healthy subjects and
those with different cardiac ailments. Finally, we show that the approach is general in that it can be used to build a
model for detecting data manipulation attacks that alter ABP sensor measurements using the ECG sensor as reference.

Keywords: Wearable medical systems, Data manipulation attacks, Data-centric attack detection

1 Introduction
Emerging wearable medical systems (WMS) are revolu-
tionizing the way of seeking and delivering healthcare.
They have already shown great potential for signifi-
cantly improving the quality of healthcare and well-being.
Figure 1 shows the architecture of a typical WMS envi-
ronment. It consists of a number of wireless sensing
devices (henceforth referred to as sensors) which form a
distributed wireless network [1] around the body of the
person who wears them (i.e., the user). These sensors
continuously monitor various types of health information
from the user and wirelessly communicate this to a base
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station. The base station processes the measured health
information, displays them to the user, andmay relay them
to a medical cloud for long-term storage and for access by
caregivers and/or any medical decision support AI. The
biggest advantage of using WMS for healthcare and well-
being is that it removes all spatio-temporal constraints of
traditional healthcare. An individual’s health can now be
monitored at all times thus providing themwith improved
quality of care.
The fact that WMS collect sensitive medical data about

their users makes them attractive targets for potential
adversaries. WMS are safety-critical systems because of
their ability to influence treatment. Any attack on them
has the potential to cause severe harm to user safety. Lack
of security in WMS can have two main consequences: (1)
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Fig. 1WMS environment

exfiltration of sensitive health data affecting user privacy
and (2) malfunction of the WMS system leading to user
harm. One of the ways of causing user harm is through
data manipulation attacks on sensor measurements. Data
manipulation attacks are a type of integrity attack, where
an adversary aims to modify the data measured by the
physiological sensors in theWMSby targeting and gaining
control of the wearable sensors within the WMS system
or changing the sensor readings during transit within the
WMS by attacking the wireless links.
Recent years have seen a plethora of data manipu-

lation attacks on sensor measurements that go beyond
exploiting the open wireless communication channel vul-
nerability identified for pacemakers [2] and insulin pumps
[3]. For instance, sensors are susceptible to a whole class
of sensory-channel threats that involve interfering with
the transducers of the sensors and introducing arbitrary
sensor measurements into the system. This bad-data-
injection can be performed using a variety of stimuli
including electromagnetic induction [4, 5], light [6–8],
and acoustic waves [9, 10]. Such sensory-channel attacks
can not only be used to tamper with the sensor mea-
surements [5], but also enable arbitrary code execution
under specific conditions, as we ourselves identified [4].
Devices/sensors in WMS have also been compromised
by leveraging the fact that they do not typically authen-
ticate the received software and libraries during on-field
updates. A compromise of the manufacturer’s servers can
thus be used to compromise sensors during firmware
updates [11]. Finally, adversaries can also physically com-
promise sensors in the wearable system and subsequently
modify their firmware. A variant of this attack is replacing
a legitimate device with amalicious one. Attacks on fitness

monitors like Fitbit being loaded with malware through
open Bluetooth ports is an example of such attacks [12].
In this paper, we present an approach to detect data

manipulation attacks on physiological sensor measure-
ments in a WMS environment. The problem of detecting
data manipulation attacks on sensor measurements has
some similarities with the problem of faulty sensor mea-
surement detection. However, detecting measurements
modified by an adversary is a muchmore challenging task.
This is because (1) the adversary maymanipulate themea-
surements in such a way that the modified measurements
are erroneous but still clinically plausible. For example,
in [5], the authors demonstrated the ability to generate
forged electrocardiogram (ECG)measurements by attack-
ing the sensor, allowing the adversary to misrepresent a
potentially dangerous arrhythmia in the user’s heart and
report it as being normal. (2) Traditional fault detection
approaches rely on the redundancy of the wireless sensors
of the same type, which might not work when we con-
sider physiological signals, as typically there is only one
physiological sensor of a particular type in WMS.
Our approach to detect such data manipulation attacks

on physiological sensors therefore leverages the fact that
different physiological sensor measurements generated
by the same underlying physiological process are inher-
ently correlated, i.e., they share similar features among
them. Thus, by capturing the commonalities between a
user’s “target” sensor measurements and other “reference”
sensor measurements, we can build a model that can
detect when “target” sensormeasurements are unilaterally
altered. This approach takes advantage of different types
of physiological sensors, which already exist in typical
WMS, thus avoiding the need of redundant sensors of the
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same type. In the rest of the paper, we use the terms signals,
sensor measurements, and sensor outputs interchangeably.
To illustrate this, we present a case study that par-

ticularly focuses on two physiological signals—ECG and
blood pressure—in its arterial blood pressure (ABP) form.
For our discussion, we assume ECG as the target and
ABP as the reference (In Section 8.4, we demonstrate that
our approach also works by assuming ABP as the target
and ECG as the reference). The reasons we use ECG and
ABP signals for our case study are twofold. (1) ECG and
blood pressure signals are some of the most commonly
measured physiological signals in WMS environments.
(2) Both ECG and blood pressure can be measured non-
invasively [13] using wearable sensors. Thus, they are ideal
to test our basic idea, which is to show that using a related
reference signal, we can detect alteration of a “target”
signal.
At this point, it is important to note that we are aware

that we are making a strong assumption that the adversary
cannot compromise the reference signal. One way to think
about the problem is that the reference signal provides a
form of redundancy for the target signal, without requir-
ing us to have another sensor measuring the target signal.
In our specific case study, we assume that the blood pres-
sure reference signal is collected at the trustworthy base
station. This can be easily done by implementing the base
station in a watch modality like the amulet system [14].
Worn on the wrist, it can measure an untampered blood
pressure measurement, which can be used as reference.
In our future work, we plan to relax this assumption and
eliminate the need for trustworthiness of the reference
signal all together.
To detect data manipulation attacks on ECG measure-

ments, our data manipulation detector works by first cap-
turing the tandem variation of the ECG and ABP sensor
measurements and using an image reconstruction-based
classifier to extract the inter-relationship between the two
signals. In this regard, we create two different classes
of images that capture (1) the inter-relationship between
the unaltered ECG and ABP sensor measurements and
(2) the relationship between altered ECG and unaltered
ABP measurements. For each class of images, we perform
principal component analysis (PCA) to compute a set of
principal components (PCs), which form the basis of our
classifier. Once the two sets of PCs are in place, for any
newly received unclassified ECG and ABP signal snippets,
a test image is first created based on tandem variation of
the two signal snippets. Then, the PCs from each class are
used to reconstruct the test image. The distances between
the test image and two reconstructed test images are then
used by a decision function to determine which class the
test image belongs to, based on the amount of reconstruc-
tion error we observe. An alert is generated if the ECG
signal snippet (or more generally the target signal in our

model), used to generate the test image, is deemed altered.
The use of the PCs allows us to eliminate the need of
feature engineering from the images.
Our detector is user-specific and needs to be created for

every user on whom the WMS is deployed. Our detector
has several advantages: (1) It does not require redundant
ECG sensors to detect data manipulation attacks on ECG
sensor measurements. (2) It can detect the alteration of
ECGmeasurement regardless of the type of alterations (in
the temporal or morphological sense) to the signal unlike
our previous work on this topic [15, 16]. More details on
the difference between the work in this paper and our
previous work is discussed in Section 2, where we pro-
vide more context on the matter. (3) The approach is also
agnostic to the attack itself whether it was mounted on the
sensors or on the communication links in the WMS.
Analysis of our detector demonstrates promising results

with over 98% accuracy in detecting even subtle alter-
ations in ECG signals within 3 s. The contributions of
this paper are fourfold: (1) the design of an approach
for adversarial alteration detection in ECG measure-
ments, (2) demonstration of the efficacy of the detec-
tor using real ECG and ABP data from the MIT
PhysioBank database [17], (3) demonstration of the
robustness of the approach in the presence of a vari-
ety of (simulated) data manipulation attacks, and (4)
demonstration of the generality of the overall approach
by using it to detect data manipulation attacks that
alter ABP measurements using ECG measurements as
reference.
The rest of the paper is organized as follows. Section 2

presents the related work. Section 3 discusses the sys-
tem and threat model along with the problem state-
ment. Section 4 presents the background for ECG and
ABP. Section 5 presents the main idea of our approach.
Section 6 presents the dataset and metrics used in this
work. Section 7 presents the parameter selection pro-
cess for our approach. Section 8 presents the security
analysis. Finally, Section 9 presents the conclusions. In
the rest of the paper, we use the terms subject and user
interchangeably.

2 Related work
2.1 Fault detection and device instrumentation-based

approaches
The consequence of data manipulation attacks is that sen-
sors produce erroneous output. Most of the existing work
on detecting erroneous sensor output has focused on the
case of faulty sensor detection. Over the years, researchers
have developed numerous solutions in this regard, partic-
ularly in the domain of wireless sensor networks [18–22].
However, most of the fault detection schemes are based
on two main assumptions: (1) the network has a large
number of redundant sensors with identical functionality
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and (2) for a given stimulus, the sensors in the same
neighborhood should have the same or similar sensed
values. Given these assumptions, the approaches clus-
ter the nodes into different “subnets” according to their
locations and compare the similarity of the device out-
put with others nearby based on a pre-defined thresh-
old. In recent years, researchers have tried to adapt
these redundancy-based methods to the domain of WMS
[23–27]. As useful as these solutions are for detecting
faults with motion sensors, they do not work when we
consider physiological sensors, as typically there is only
one physiological sensor of a particular type in a WMS.
An interesting approach for detecting medical device
misbehavior has been developed by Kevin Fu’s team at
Michigan, called WattsupDoc [28]. The approach uses a
supervised machine-learning model to learn a hospital-
based medical device’s (a drug compounder) behavior
with respect to the amount of current the compounder
device draws. However, such an approach would require
instrumentation of the power adapter of the medical
device, which may not be feasible in the WMS context
because they are usually battery powered and not con-
nected to themains. Consequently, in this project, we plan
to develop approaches that detect adversarial manipula-
tion of device output without assuming (1) redundancy of
devices or (2) device instrumentation.

2.2 Our prior work
Our own previous work has tackled the issue of data
manipulation attacks by focusing on detecting ECG sen-
sor output alteration as a result of data manipulation.
However, we have done this in a limited way. Basically,
ECGmeasurement has two key characteristics—temporal
and morphological—both of which can be manipulated
by data manipulation attacks. In our previous work, we
developed two separate models to detect the temporal and
morphological alterations of ECG measurements using
reference signals. In [15], we developed an ECG temporal
alteration detection model, which captures the alterations
of the timing properties (RR interval) of the ECG signal
by correlating ABP and respiration signals with the ECG
signal, while, in [16], we developed an ECG morphologi-
cal alteration detection model that detected a change in
the shape of the ECG signal as a result of data manipula-
tion attacks using only the ABP signal as reference. Both
approaches relied on the use of identifying hand-crafted
characteristics features between the ECG and ABP signals
to learn a supervised learning model for learning the nor-
mal behavior of the two signals for a user and then use
thatmodel to detect unilateral changes to the timing prop-
erty or the morphology of the ECG signal. Though similar
overall to the case study being presented in this paper,
there are fundamental differences between our previous
work and the current effort.

• In our previous work, we presented two separate
models, one for the temporal and one for the
morphological case. Both these models were tuned to
work individually and not together. Consequently,
the temporal alteration detector required 60 min of
user data to train and required 5 min of user data to
detect alteration, compared to the 20 min to train
and 3 s to detect alteration in the morphological case.
Combining the two models in a naive manner would
have introduced a detection latency bottleneck from
the temporal detector. Consequently, in this paper,
we take a different approach altogether, which allows
to build a unified model that can detect both
temporal and morphological alterations in ECG
measurements while requiring only 10-min user’s
data to train the model and 3-s time to generate an
alert (as we shall see later).

• Further, our previous work in [15] and [16] required
tedious feature engineering to function. In this work,
as we shall see, the use of an image-based classifier
and principal component analysis allows to us to
learn the features automatically, which is easier to
design and deploy.

In summary, even though the fundamental idea of the
paper of using a related trustworthy signal to detect
data manipulation of a sensor output has been presented
before, the detector presented in the case study in this
paper itself is fundamentally different, much more gen-
eral, and more thoroughly evaluated.

3 Systemmodel, threat model, and problem
statement

3.1 Systemmodel
We assume the WMS consists of a number of wearable
medical devices (i.e., sensors). These sensors are low-
capability devices that collect physiological data from the
user at regular intervals and forward the data to a highly
capable sink entity, which we refer to as the base station,
for processing and storage. The base station provides a
root of trust for our system and is assumed to be not
susceptible to attacks. Our proposed detection system
is deployed at the base station. Consequently, any alter-
ation of the measurements has to occur at the sensor
itself or at the wireless link between the sensor and the
base station.

3.2 Threat model
We assume the adversaries mounting data manipulation
attacks possess several characteristics. (1) Adversaries can
cause data manipulation by targeting the wireless link
between sensor and the base station or by compromising
the sensor’s firmware or library update process as in [11].
(2) The data manipulation attacks are assumed to be not
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advanced persistent in nature and therefore affect a subset
of the sensors in the WMS. (3) The non-advanced persis-
tent nature of the attacks also means that the adversary
has no prior information on the user including their past
medical history or records.
Data manipulation attacks can be used to alter the sen-

sor measurements in a WMS environment in four general
ways: (1) by introducing arbitrary noise to the original
sensor measurements, (2) by replaying historical sensor
measurements stolen from the user in the past as cur-
rent measurements, (3) by replacing the actual sensor
measurements with clinically irrelevant data, and (4) by
replacing the real sensor measurements with measure-
ments belonging to another user. In the case of intro-
ducing arbitrary noise, the user and their caregivers will
immediately be able to see the noise and can there-
fore ignore the measurements, and inspect the sensor.
Replaying historical sensor measurement would require
adversaries to access a user’s past medical records, which
we assume they do not possess. Replacing the actual
sensor measurements with clinically irrelevant data can
be detected by using conventional faulty sensor data
detection techniques. Consequently, in this paper, we
focus on the fourth case, where actual sensor mea-
surements are replaced with measurements belonging to
other users. This results in clinically plausible sensor
measurements for the victim without the measurements
being accurate.

3.3 Problem statement
Our goal is to develop an approach for detecting both
alteration of sensor measurement in a WMS using a
synchronously obtained measurement of an inherently
trustworthy reference sensor. In this regard, we primarily
focus on detecting malicious temporal and morphological
alterations on ECG sensors using ABP sensor measure-
ments as reference. Further, we also aim to show that our
larger idea can be used in detecting the converse as well,
where ABP is altered and ECG acts as the trustworthy
reference.

4 Background
As we are focused on showing our data alteration detec-
tion approach using ECG and ABP signals, in this section,
we provide a short summary of the main characteristics
and inter-relationship between them. The following para-
graph is summarized from our preliminary work on this
topic [15, 16]. Both signals are known representations of
the cardiac process and reflect the state of a person’s car-
diovascular system. Figure 2 shows a sample ECG wave. It
consists of what is known as an ECG complex. An ECG
complex consists of five components, which are usually
labeled P, Q, R, S, and T waves. The P-wave signifies atrial
depolarization, which causes the blood to be pushed to

the ventricles. The QRS complex is observed during the
rapid depolarization of the right and left ventricles, which
causes the blood to be pushed out of the ventricles into
the lungs and the rest of the body. Finally, the T-wave is
produced during the depolarization of the ventricles. The
time difference between two R-peaks is known as an RR-
interval, and it refers to the beat-to-beat variations of the
heart and is a measure of a person’s heart rate. ABP, on the
other hand, is the continuous measurement of blood pres-
sure. Figure 3 illustrates a typical ABP signal snippet. The
trough of the signal is the diastolic blood pressure and the
peak is the systolic blood pressure. Diastolic troughs occur
near the beginning of the cardiac cycle and systolic peaks
occur when the ventricles contract and push the blood
through the entire body. As ECG and ABP signals are both
measures of the cardiac process, both of them track each
other. For example, an R-peak in the ECG signal will typi-
cally be followed by a systolic peak in the ABP signal (see
Fig. 4). This is because both represent the compression
of the ventricles that results in the blood being circulated
through the entire body. Consequently, any pathologies in
the cardiac process that results in an abnormal ECG wave
form will also be reflected in the ABP signal [29]. This
final observation forms the basis of our data manipulation
detector.

5 Approach
From here on, we shall focus on the ECG data manip-
ulation attacks. ABP alteration detection using ECG ref-
erence will be covered at the very end, in the interest of
avoiding repetition. All the details of the ABP detector
remain the same as the ECG detector, except the signals
switch.
Figure 5 shows the overview of our detector. As we are

interested in identifying alterations of the ECG measure-
ments based on the ABP measurements, it is essential to
be able to capture the inter-relationship between the ECG
and ABP measurements in tandem. Our detector works
in two phases: training phase and detection phase. In the
training phase, we first create two classes of images that
capture (a) the inter-relationship between synchronously
measured ECG and ABP measurements from a particu-
lar user for whom we are in the process of training our
detector and (b) the inter-relationship between ABP mea-
sured from the user and ECGmeasured from several other
different users (thus modeling the attack where a user’s
ECG is replaced with someone else’s as part of the data
manipulation). We then perform PCA on the two classes
of images to generate two sets of PCs. Based on the two
sets of PCs, we create a user-specific classifier (i.e., a deci-
sion function), which can then be used to determine if a
newly received snippet of ECG signal has been altered or
not. In the detection phase, the classifier simply makes a
decision on any newly received ECG measurements from
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Fig. 2 P, Q, R, S, and T waves in a typical ECG

the user, in conjunction with the synchronouslymeasured,
unaltered ABPmeasurements also obtained from the user.

5.1 Training phase: image creation
In the training phase, we generate images of the ECG
and ABP signals to capture the inter-relationship between
them. These images are generated based on the portrait
of the two signals. We first describe how to generate a
portrait, and we then describe how to generate an image
based on the corresponding portrait.
The idea of portrait is inspired by the idea of phase

space trajectory, which was originally used to delineate the
nonlinear behavior of a dynamic system [30]. A portrait

Fig. 3 Systolic peak and diastolic trough in ABP

allows us to specify the instantaneous state of several sig-
nals over time. We define a portrait as an n-dimensional
representation of the relationship of several time series in
one multi-dimensional space, in this case ECG and ABP
signals. To generate a portrait, first, we synchronously
measure w time units of ECG and ABP signals. For each w
time units of ECG and ABP signals, we then apply unity-
based normalization bringing all values to the range [0,1].
Normalization is needed as the magnitude and units of
ECG and ABP signals are different. Formally, let a(t) and
e(t) be the normalized ABP and ECG signals at time t,
where 1 ≤ t ≤ w. Then, we create a 2-dimensional por-
trait, G, using the function f (t) = (a(t), e(t)), where again
1 ≤ t ≤ w. Figure 6 shows an example of a portrait of ECG
and ABP signals.
Once a portrait is created, the next step is to find a

way to extract the information from the portrait that cap-
tures the inter-relationship between the ECG and ABP
signals. To do this, we take a graphical view of portrait
at a certain resolution, thus creating an image of the por-
trait. This image depicts the trajectory formed by ECG
and ABP signals in the 2-dimensional space. To create an
image I (from portrait G), we first view portrait as an
n×n grid, where each element of the grid records whether
there are any points from the portrait that fall into it. We
store this information in an n × n matrix, in which each
element c(i, j) is equal to either 0 or 1. The value 1 rep-
resents that there is at least one point that falls into the
corresponding grid element (i, j). On the other hand, the
value 0 represents that there are no points that fall into the
corresponding grid element (i, j). In this work, we choose
n = 50 for generating the matrix, as it allows us to cap-
ture the required inter-signal relationship without overly
increasing the complexity of resulting image. This binary
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image matrix with n × n elements is what we refer to as
image I.
Figure 7 shows an example of an image of the portrait of

the ECG and ABP signals from Fig. 6. The dark parts are
the elements in the imagematrix that have a value of 0 and
the light parts are those elements that have a value of 1.

During the training phase, we create a user-specific clas-
sifier. In this regard, we create two classes of images, one
is labeled as negative class and another one is labeled as
positive class. The negative class images are created by
a sliding window of size w, over the synchronously mea-
sured ECG and ABP signals from the user whose classifier

Fig. 5 Detecting malicious alterations of ECG sensor measurements
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Fig. 6 An example of portrait

we are training.We do this for� time units, wherew < �.
The positive class images are created by a sliding window
of size w, over � time units ABP of the user and ECG
belonging to several other users. Each w-sized window
of data produces one portrait and therefore one image.
Consequently, both negative and positive classes have a
series of images. Figure 8 shows an example of one neg-
ative class image created using synchronously measured
ABP a(t) and ECG e(t) from a user, while Fig. 9 shows
an example of one positive class image created by using
the same ABP a(t) measured from the user and an ECG
e′(t)measured from another user, which captures the situ-
ations where the ECG of the user is altered with someone

Fig. 7 An example of an image I obtained from a portrait G

a

b

c

Fig. 8 A negative class image created by ECG and ABP snippets
synchronously measured from a user. The top one shows normalized
ECG e(t) and normalized ABP a(t). The middle one shows a portrait G
generated based on e(t) and a(t). The bottom one shows a negative
class image I generated
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a

b

c

Fig. 9 A positive class image created by the same ABP snippet and an
altered ECG measurement. The top one shows normalized altered
ECG e′(t) and normalized ABP a(t). The middle one shows a portrait
G′ generated based on e′(t) and a(t). The bottom one shows a
positive class image I′ generated

else’s through a data manipulation attack. Consequently,
the portrait G generated by using the function f (t) =
(a(t), e(t)) and the portrait G′ created by using the func-
tion f (t) = (a(t), e′(t)) are different, and hence, the image
I created based on G and the image I ′ created based on G′
are different.

5.2 Training phase: developing an image
reconstruction-based classifier

Once the series of images have been obtained from the
training data belonging to both classes, we construct a
classifier to identify which class a newly received image
belongs to. In this regard, we leverage principal compo-
nent analysis (PCA), which is a popular technique for
compressing the data and has been widely used in many
computer vision tasks. From the data analyzed, PCA can
derive a set of independent linear combinations of prin-
cipal components (PCs), which usefully explain variation
and bring out strong patterns in the data [31].
Inspired by [32], to build our classifier, we perform PCA

on the series of images in both positive and negative
classes to obtain two different sets of PCs. The set of PCs
generated from the images in a class will preserve impor-
tant characteristics of that class. Letm be the total number
of images in a class, where each image is represented as a
column vector vi with a length of n2 (as the size of each
image is n × n). We then generate a set of PCs from these
m images in this class, by first creating a covariancematrix
Cx such that:

Cx =
m∑

i=1
(vi − μx)(vi − μx)

T (1)

where x is a label (positive or negative depending upon the
class of images for which we are constructing the covari-
ance matrix), and μx is the mean of the column vectors of
these images in class x which is given by:

μx = 1
m

m∑

i=1
vi (2)

The PCs are then generated by finding the eigenvectors
of the covariance matrix Cx. Once two sets of PCs have
been obtained from the images in each of the class, we
essentially have the main element of our classifier. This
is because the set of PCs for a given class should cap-
ture all the major variations observed in the images of that
class. Then, the next step is to classify which class a newly
received image u, obtained from yet unseen ECG and ABP
measurement snippet, belongs to. We do this by seeing
which class PCs can reconstruct the image u the best.
To reconstruct an image using PCs obtained from the

images of a given class, we first sort the eigenvectors of the
covariance matrix Cx in decreasing order of their corre-
sponding eigenvalues, where x is either the label positive
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(pos) or negative (neg).We then select the first k eigenvec-
tors to form a set of PCs and create a matrix Px. Each row
of Px is an eigenvector obtained from Cx. We can project
the image u on this eigenspace as follows:

p = Px(u − μx) (3)

We then try to recover the original image from this
projection as follows:

u′
x = PTx p + μx = PTx Px(u − μx) + μx (4)

where u′
x is the reconstructed image based on the set of

PCs from class x.
Subsequently, we compute the reconstruction error, by

calculating the Euclidean distance between the recon-
structed image (using the set of PCs of a given class) and
the original one. We represent the reconstruction error as
dx and calculate it as follows:

dx = ∣∣u′
x − u

∣∣ (5)

Here again, x is the label that can be positive or negative.
Finally, based on these two reconstruction errors, we use
a decision function which outputs the label of this image u
as either positive or negative:

label(u) =
{
Positive, if dpos − dneg < 0
Negative, if dpos − dneg ≥ 0 (6)

The decision function essentially picks the label of the
class whose PCs are better able to recreate the test image
and hence have shorter distance, i.e., smaller reconstruc-
tion error. The two sets of PCs and the decision function
thus form our image reconstruction-based classifier. This
classifier is user-specific and needs to be generated for
each user individually.

5.3 Detection phase
Once the classifier is in place, we can use it to decide if any
newly received snippet of ECG measurements have been
maliciously altered or not. In this regard, we collectw time
units of newly measured ECG and ABP signals from the
user and normalize them to bring all values to the range
[0,1]. The normalized w-sized ECG and ABP signals are
then used to generate a test image. We feed this test image
into our user-specific, image construction-based classifier.
Our detector first computes two reconstructed images u′

x
from this input test image based on Eq. 4 using the two
projection matrices Px and the two means of the column
vectors μx (obtained during the training phase), where x
is either the label positive or negative. Then, by compar-
ing the input test image with its two reconstructed images,
respectively, using Eq. 5, two reconstruction errors are
generated. Based on these two reconstruction errors, our
detector uses its decision function (i.e., Eq. 6) to decide
the label of the test image as either positive or negative. If
the test image is deemed to be positive, we consider this

w second ECG signal snippet to be altered and generate
an alert.

6 Dataset andmetrics
Before we go into the details of selecting the various tun-
able parameters of our detectors and measuring its overall
performance, we present a short description of the dataset
we used for our analysis along with the principal metrics
used in our analysis.

6.1 Dataset
In this work, we used data from four databases: MIT
PhysioBank Fantasia, MGH/MF, MIT-BIH Normal Sinus
Rhythm (NSR), and MIT-BIH Arrhythmia databases [17].
The Fantasia and MIT Normal Sinus Rhythm databases
are made up of healthy subjects (i.e., users), while the
MGH/MF and MIT-BIH Arrhythmia databases mainly
contain data from subjects with specific cardiac abnor-
malities. As the data source is diverse, the sampling
rate of the signals from different databases are not
the same. Both Fantasia and MGH/MF databases con-
tain ECG and ABP signals sampled at 250 Hz and
360 Hz, respectively, while MIT-BIH NSR and MIT-
BIH Arrhythmia databases only contain ECG signals
sampled at 128 Hz and 360 Hz. We upsampled sig-
nals from Fantasia and MIT-BIH NSR databases to
the same sampling rate, 360 Hz, as our portrait tech-
nique requires that both ECG and ABP signals are
synchronously measured. We also applied a third-order
Butterworth filter with a cutoff frequency at [ 1, 50] Hz
to remove the line-noise and baseline wandering in the
ECG data.
We used 33 subjects from Fantasia and MGH/MF

databases to form a training group, because of the avail-
ability of both ECG and ABP signals for them. For each
of these 33 subjects, we excluded the first 15 min of their
ECG and ABP data as they contain a lot of artifacts and
ended up with an average about 41 min of usable ECG
and ABP data. These data collected from the subjects of
the training group is used to train and validate the classi-
fier.We categorized the subjects in our training group into
two types based on their ECG signals: (1) Normal sub-
ject, which only includes subjects who did not suffer from
any ailments and had a normal sinus rhythm ECG, and
(2) Arrhythmia subject, which only includes subjects who
were found to have arrhythmias. In addition, we choose
64 subjects from MIT-BIH NSR and MIT-BIH Arrhyth-
mia databases to form an external group. The MIT-BIH
NSR and MIT-BIH Arrhythmia databases only provide
ECG signals for its subjects; these ECG signals were used
to replace the original ECG signals collected from our
33 subjects in the training group, thus simulating a data
manipulation attack. The data in the external group also
has both normal and arrhythmic ECG data. Table 1 shows
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Table 1 Dataset summary

Group Type Database Total . Male Female Avg. Std.

no. age age

(years) (years)

Training
group

Normal Fantasia 12 5 7 46.5 25.5

Arrhythmia MGH/MF 21 16 5 64 20.3

External
group

Normal MIT-BIH
NSR

18 5 13 34.3 8.4

Arrhythmia MIT-BIH
Arrhythmia

46 26 20 62.6 18.2

All 97 52 45 55.7 21.3

the statistics on the subject population we used to train
and test our ECG alteration detector.

6.2 Metrics
We use the following metrics to validate our work: false
positive rate, false negative rate, and balanced accuracy
rate. We define false positive (FP) rate as the fraction of
the cases in which an unaltered ECG sensor output is
misclassified as altered. Similarly, we define false negative
(FN) rate as the fraction of the cases where an altered
ECG sensor output is misclassified as unaltered. Further,
true negative (TN) rate is defined as the fraction of the
unaltered ECG sensor output properly classified as unal-
tered, and true positive (TP) rate is the fraction of the
altered ECG sensor output properly classified as altered.
We define balanced accuracy (BAC) rate as:

BAC = 0.5 ∗ TP + 0.5 ∗ TN . (7)

The reason we use BAC is that it avoids inflated per-
formance estimates on imbalanced datasets [33]. This is
important given that we have an imbalanced sample with
many more positive images than negative images during
the training phase. Even though we compute thesemetrics
for each subject in our dataset, we validate our approach
using summary statistics of these metrics over all subjects.

7 Parameter selection
In this section, we illustrate how we select the three most
important parameters of our system: �, the amount of
(ECG and ABP) data needed to train our classifier (i.e.,
training time); w, the amount of data needed to test for
malicious alteration measurements (i.e., testing time); and
k, the number of principal components we need to build
our classifier.
Note that the choice of the three aforementioned

parameters is important for the performance of our detec-
tor because of the safety-critical nature of WMS. Our
system uses w-sized ECG and ABP sensor measurements
to decide if the snippet of ECG sensor measurement is
altered or not. Therefore, the window size w decides the
minimum length of the altered sensor measurement that

Fig. 10 Process for selecting parameters: window size w, training
time �, and number of PCs k

our system is able to detect. Further, even though the
training is done in an offline manner, we need to make
sure that it can be done quickly so that the user does
not need to endure long interruptions in WMS opera-
tion. Consequently, the training time � has to be as short
as possible as well. Lastly, the number of PCs k deter-
mines the number of eigenvectors we choose for our
image reconstruction. If k is small, the classifier might not
be able to capture enough information of the image dur-
ing reconstruction. On the contrary, if k is too large, the
images reconstructed by two sets of PCs (one for the pos-
itive class and one for the negative class) might be too
similar to the original image for the decision function to
be able to assign them a proper label. Therefore, finding
an appropriate value of k is crucial. Figure 10 shows our
parameter selection process.
To select window size, w, we set � to a fixed value of

10 min and k to a fixed value of 10 and test our ECG
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Fig. 11 BAC, FP, and FN rates for various w

alteration detector with the data from users in the train-
ing group. We tried several values for w and eventually
settled on 3, 4, 5, and 6 s. This is because values smaller
than 3 s did not capture meaningful information about the
inter-relationship between ECG and ABP signals, while
values greater than 6 s were assumed too slow for detect-
ing the attacks. For each window size, w, we generated
a set of negative class images by using 10 min of syn-
chronouslymeasured ECG andABP signals from the same
subject. We generated the set of positive class images by
combining each subject’s ABP snippet with a randomly
selected ECG snippet from every other subject in the
training group. Then, we performed PCA on both posi-
tive class images and negative class images to extract two
different sets of PCs. The resulting two sets of PCs were
then used to train our image reconstruction-based classi-
fier. We used 10-fold cross-validation to validate each of
the classifiers built. Figure 11 shows the average BAC, FP,
and FN rates for different window sizes, w. We can see
that the average BAC rate of the user-specific classifiers
for these four different window sizesw are all considerably
high. Overall, we can see that the balanced accuracy rate
of classifier when we set w with these four values is largely
the same. We therefore choose w = 3 s, as it provides us
with minimum length of the altered sensor measurement
that our system is able to detect. However, if an adversary
only altered an ECG snippet less than 3 s, then our detec-
tion system may not be able to detect it. This is one of the
limitation of our current system, and we plan to reduce
this window size w in our future work.
To select the training time, �, we evaluated the classi-

fier of our ECG alteration detector by training it for four

different durations: 5, 10, 15, and 20 min (with a fixed
w = 3 s and a fixed k = 10). Again, for each value of �,
we generated a set of negative class images and positive
class images using data from the training group. Then,
we used these two classes of images to train the user-
specific, image reconstruction-based classifier for each
user in the training group, respectively. We used 10-fold
cross-validation to validate each of the classifiers built.
Figure 12 shows the average BAC, FP, and FN for differ-
ent values of �. Overall, there is only a slight difference
in balanced accuracy rate when we set the training time
� with four different values. We can see that in terms
of the balanced accuracy rate, the training time � = 10
and � = 15 min are really close (only 0.01% apart) and
they outperform the other cases. However, the time that is
needed to train the classifier when we set � = 10 min is
much less compared to the case when we set � = 15 min.
Consequently, we set � = 10 min while training our
classifier.
Finally, to select the number of PCs, k, we evaluated our

ECG alteration detector by training it with four different
numbers of PCs k: 5, 10, 15, and 20 (with a fixed window
size w = 3 s and a fixed training time � = 10 min). As
before, we first generated a set of negative class images
and positive class images using data from the training
group. Then, for each value of k, we built our classifier for
each user in the training group. We used 10-fold cross-
validation to validate each of the classifiers built. Figure 13
shows the average BAC, FP, and FN rates for different
values of k. Overall, there is only a slight difference in bal-
anced accuracy rate when we set the number of PCs k
from 5 to 20. We can see that the balanced accuracy rates
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Fig. 12 BAC, FP, and FN rates for various �

for k = 10 and k = 15 are the same and also the highest.
We select k = 10 for training our classifier as it bal-
ances the computational cost of the image reconstruction
without reducing the overall accuracy of the classifier.
Therefore, from the above results, we select training time
� = 10 min, window size w = 3 s, and number of PCs
k = 10 to train the classifier of our ECG alteration detector.
Figure 14 shows the box plots for balanced accuracy

(BAC), false positive (FP), and false negative (FN) rates
when we performed 10-fold cross-validation of the clas-
sifier of our detector when we set � = 10 min, window
size w = 3 s, and k = 10. These results are obtained

using each of the 33 user-specific models we have using
just the training data (which is determined by the size
of �), which means using just 10 min of data from our
dataset. The purpose of this result is to show how well
our model performs when we perform cross-validation on
our training data using the 33 users of the training group.
As mentioned before, the 33 users in the training group
contain users with both normal ECG as well as arrhyth-
mic ECG. We see that the Arrhythmia subject group has
a slightly higher spread compared to the Normal sub-
ject group with respect to the reported BAC, FP, and FN.
This is reasonable as the Normal subject group consists

Fig. 13 BAC, FP, and FN rates for various k
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Fig. 14 Validation of ECG alteration detection. The top one shows the validation of ECG alteration detection w.r.t. BAC. The bottom one shows the
validation of ECG alteration detection w.r.t. FP and FN rates

only of the subjects with a normal sinus rhythm; on the
other hand, each subject in the Arrhythmia subject group
has various types of ECG signals. For Normal subjects,
our detector provides a 99.18% BAC on average with an
average false positive rate and an average false negative
rate at 1.68% and 0.13%, respectively. Not surprisingly, the
performance degrades slightly when we consider subjects
with cardiac abnormalities. For Arrhythmia subjects, the
average BAC rate is 98.19% with an average false positive
rate and an average false negative rate at 2.25% and 1.38%,
respectively. Overall, the validation results show that the
classifier of our ECG alteration detector trained is very
accurate with a 98.52% BAC on average with an average
false positive rate of 2.04% and an average false negative
rate of 0.92%.
In this section, we trained a user-specific classifier for

each subject in the training group. In the next section, we
present the security analysis of our approach by simulat-
ing a data manipulation attack that results in alteration
of ECG measurements using unseen data from the train-
ing group (data beyond the 10-min mark used for training

our mode in the dataset) as well as data from the external
group.

8 Security analysis
In this section, we address the viability of our detec-
tor in detecting ECG alterations from data manipulation
attacks. We simulate data manipulation attacks on ECG
sensor measurements in three ways: (1) by replacing legit-
imate ECG measurements of a user (referred to as the
victim when appropriate) with that of another user in the
training group, (2) by replacing legitimate ECG of a user
with that of users in the external group, and (3) by replac-
ing legitimate ECGmeasurements of a user with synthetic
ECG obtained from a generative model parameterized
based on a victim’s own ECG data to impersonate them.
Before we delve into the attack details, we introduce

two key notations that we repeatedly use in this section.
We define Tlearn as a time interval for which we collected
ECG and ABP data from a user to build our detector.
The duration of Tlearn is the same as the training time
�, i.e., 10 min. Tcurr is the time interval where the ECG
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Fig. 15 Timeline for Tlearn and Tlearn

measurements of the user are altered. For our analysis,
we set Tcurr to 25 min, and we assume that an adversary
can alter any element of the Tcurr interval of ECG mea-
surements. Note that, since our testing time is only 3 s, as
long as the adversary replaces 3 s or more of original ECG
measurement, we should be able to detect it. The time
durations chosen for Tcurr is limited by the amount of data
we had in our dataset for each user. Figure 15 shows the
timeline withTlearn andTcurr .Tlearn always precedesTcurr .

8.1 Performance in the absence of data manipulation
attacks

We first tested our approach to see if it can correctly clas-
sify a user’s ECG signals (we do not use the term victim in
this subsection as there is no attack) once the user-specific
detector is trained. This is very important to ensure that
our signal alteration detector for a user is able to identify
yet unseen data from the same user. Therefore, for each
user, we obtained Tcurr = 25 min of synchronous ECG
and ABP signals. The two resulting time series are then
divided into 500 3-s intervals, each of which produces an
image. These 500 images are then fed into the detector,
which then labels them as positive or negative. Ideally, we
should get all negative labels for the images, as they are
from the same user. Overall, when averaged over the 33
user-specific detectors, our approach achieved an aver-
age detection accuracy rate of 96.22% (i.e., FP = 3.78%)
in detecting unmodified ECG data, which demonstrates
that our approach indeed has a low false alarm rate. This
result also shows that in most cases, the inter-relationship
between ECG and ABP signals did not change over time
demonstrating that the detector learned an accurate rep-
resentation of the user’s cardiac process. Further there are

21 male and 12 female users in our training set. The aver-
age detection accuracy rate for the detectors built for 21
male users is 95.53% and for 12 female users is 97.42%.
Further, the average accuracy rate of the detectors built
for 11 adult (18 to 55 years old) users is 97.14% and for 22
senior (56 years old and up) users is 95.76%. These results
indicate that our classifiers perform well for a variety of
user characteristics in the absence of attacks.

8.2 Performance in the presence of data manipulation
attacks

Data manipulation attacks on the ECG sensor measure-
ments require the adversary to replace the victim’s ECG
measurements with that of another user. The victims here
are the 33 users in the training group whose ECG sig-
nals are altered. The user-specific models for each of these
33 users (which we also refer to as victim-specific models,
when justified, for clarity) are the ones that we are evalu-
ating in experiment. All results are consequently reported
after being aggregated for all 33 users in the training
group. Datamanipulation which replaces the victim’s ECG
with another person’s ECG can be mounted in two gen-
eral ways: (1) by replacing the real ECG measurements
from another user in the training group and (2) by replac-
ing the real ECG measurements from another user in the
heretofore unseen external group.
First, we consider the case where the adversary modi-

fies Tcurr duration of a victim’s ECG time series with ECG
measurements from another user in the training group.
This experiment simulates the case where the adversary
has access to the ECGmeasurements of users in the train-
ing group (other than the victim whose detector is being
evaluated). Thus, for a given user, we replace each of the
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consecutive 3-s ECG snippets in his Tcurr with a ran-
domly selected 3-s ECG measurement snippet obtained
from a randomly selected user in the training group. The
modified ECGmeasurement was then fed into the victim-
specific detector along with the legitimate (i.e., unmodi-
fied) ABP signal measured in Tcurr from the victim. The
detector then produces a label for each 3-s ECG snip-
pet of the modified ECGmeasurements. In aggregate, our
approach achieved an average detection accuracy rate at
99.53% (i.e., FN = 0.47%). Here, we do not have results
for false positives because all the 3-s snippets being tested
come from someone other than the victim. This demon-
strates that even if an adversary has access to the ECG
data of users from the training group, our approach can
still detect it with considerable accuracy. Further, the aver-
age detection accuracy rate for the detectors built for 21
male users is 99.64% and for 12 female users is 99.35%.
Lastly, the average accuracy rate of the detectors built for
11 adult (18 to 55 years old) users is 99.89% and for 22
senior (56 years old and up) users is 99.35%. These results
indicate that our classifiers perform well for a variety of
user characteristics when a user’s ECG is replaced with the
ECG of another user from the training set.
We now consider the case where the adversary modi-

fies Tcurr duration of a victim’s ECG time series with ECG
measurements from another user in the external group.
This experiment simulates the case where the adversary
replaces legitimate ECG measurements with those of yet
unseen users. Thus, for a given victim, we replaced each of
the consecutive 3-s ECG snippets in their Tcurr with a ran-
domly selected 3-s ECG measurement snippet obtained
from a randomly selected user in the external group. The
modified ECGmeasurement was then fed into the victim-
specific detector along with the legitimate (i.e., unmod-
ified) ABP signal measured in Tcurr for the victim. The
detector then produces a label for each 3-s ECG snippet of
the modified ECGmeasurements. Our approach achieved
an average detection accuracy rate at 98.86% (i.e., FN =
1.14%). Again, we do not have results for false positives
because all the 3-s snippets being tested come from some-
one other than the victim. This demonstrates that even if
an adversary has access to the ECG data of the users from
the external group, our approach can still detect it with
considerable accuracy. It is not surprising that the perfor-
mance of this case is a little worse than the previous case,
because the adversary is trying to feed heretofore unseen
ECGmeasurements into the detector. However, the detec-
tion accuracy loss is little, demonstrating the robustness of
our detector and our approach. Further, the average detec-
tion accuracy rate for the detectors built for 21 male users
is 98.95% and for 12 female users is 98.70%. Lastly, the
average accuracy rate of the detectors built for 11 adult (18
to 55 years old) users is 99.90% and for 22 senior (56 years
old and up) users is 98.34%. These results indicate that our

classifiers perform well for a variety of user characteristics
when a user’s ECG is replaced with the ECG of another
user from the external set.

8.3 Performance in the presence of data manipulation
attacks using synthetic ECGmeasurements

So far, we have assumed that the adversary does not have
access to any information about the user’s physiological
signal. In this experiment, we loosened this assumption a
little. We now consider the case where the adversary has
the knowledge of the statistical properties of a victim’s
ECG signal. This information can be useful for the adver-
sary because they can then use it to generate a synthetic,
diagnostically equivalent ECG signal for the victim using
generative models for physiological signals. An adversary
who has access to a synthetic, diagnostically equivalent
ECG signal for a victim can then try to replace their ECG
time series with the synthetic ECG obtained from gener-
ative detectors parameterized based on that victim’s own
ECG data.
We use ECGSYN [34], a well-known synthetic ECG

generator, which uses a generative model to produce clin-
ically relevant synthetic ECG signals given a set of input
parameters. ECGSYN can be parameterized for anyone by
collecting their ECG data and extracting certain temporal
properties (i.e., represented as average heart rate, stan-
dard deviation of the heart rate, and LF/HF ratio. Here, LF
stands for low frequency which lies in the range of 0.04
to 0.15 Hz, while HF stands for high frequency which lies
in the 0.15 to 0.4 Hz range) and morphological properties
(i.e., represented as (a, b, θ), which are the height, width,
and distance to R-peak, respectively) from it [34].
To extract both temporal and morphological properties

of the victim’s ECG, we first collect 5 min of original user’s
ECG signals measured in Tlearn. We choose 5 min as that
is the minimum amount of ECG signals we need to col-
lect to produce clear waves in both low-frequency and
high-frequency bands, which are then used to calculate
the one of temporal properties (i.e., LF/HF ratio). We then
extract the morphological properties by using curve fit-
ting approach described in [35]. The temporal properties
were obtained by detecting the R-peaks, generating RR-
interval time series, computing the average and standard
deviation of the RR-intervals, and integrating the power-
spectral density of RR-intervals over the LF and the HF
bands.
Once both temporal and morphological properties are

extracted from the original user’s ECG, we then use
ECGSYN to generate synthetic ECG signals to replace the
original user’s ECG signals in Tcurr . Particularly, we con-
sider two different kinds of synthetic ECG signals that the
adversary uses to replace the original user’s ECG signals:
(1) unaltered synthetic ECG signal, which has the same
temporal and morphological properties with the original
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Fig. 16 Summary of detection accuracy for various attack scenarios

user’s ECG, and (2) altered synthetic ECG signal, which
has different temporal properties from the original user’s
ECG but same morphological properties with the original
user’s ECG. In the unaltered synthetic ECG signal case,
the ECGSYN was parameterized with the temporal and
morphological properties of the original user’s ECG. In
the altered synthetic ECG signal case, the ECGSYN was
parameterized with the same temporal and morphologi-
cal properties of the original user’s ECG except with an
altered average heart rate parameter to a value outside
the usual heart rate range of the user. For instance, if the
average heart rate of the victim’s ECG is at [ 60, 100] beats
per minute (bpm), we then changed her average heart
rate to a random value either above 100 bpm or below
60 bpm. Similarly, if the average heart rate of the original
user’s ECG is outside of the [ 60, 100] bpm range, we then
changed her average heart rate to a random value between
60 and 100 bpm.
Once the ECGSYN is parameterized, we then gener-

ate the two different kinds synthetic ECG signals for
each user in the training group. Each synthetic ECG sig-
nal time series is 5 min long. We replace each of their
randomly selected 3-s ECG snippet in Tcurr with 3 s
of synthetic ECG snippet. The modified ECG measure-
ment was then fed into the victim-specific detector along
with the legitimate (i.e., unmodified) ABP signal mea-
sured in Tcurr from the victim. The detector then pro-
duced a label for each 3-s ECG snippet of the modified
ECG measurements. In aggregate, our approach achieved
an average detection accuracy rate at 98.23% (i.e., FN =
1.77%) in detecting unaltered synthetic ECG signal case
and an average detection accuracy rate at 98.69% (i.e., FN

= 1.31%) in detecting altered synthetic ECG signal case.
This demonstrates that even if adversaries have access
to the statistics of the original user’s ECG signal and
induce the synthetic ECG signal based on this informa-
tion, our approach can still detect it with considerable
accuracy.
Further, in the case of detecting unaltered synthetic

ECG signal, the average detection accuracy rate for the
detectors built for 21 male users is 98.71% and for 12
female users is 97.37%. The average accuracy rate of the
detectors built for 11 adult (18 to 55 years old) users
is 99.07% and for 22 senior (56 years old and up) users
is 97.81%, while in the case of detecting altered syn-
thetic ECG signal, the average detection accuracy rate for
the detectors built for 21 male users is 99.05% and for
12 female users is 98.07%. Lastly, the average accuracy
rate of the detectors built for 11 adult (18 to 55 years
old) users is 100.00% and for 22 senior (56 years old
and up) users is 98.04%. These results indicate that our
classifiers perform well for a variety of user charac-
teristics when a user’s ECG is replaced with the syn-
thetic ECG generated from the parameters of the users
themselves.
Figure 16 shows the box plots for detection accuracy

rate of our ECG data manipulation detector in detecting
different types of alteration of the ECG measurements.

8.4 Performance in the presence of data manipulation
attacks on the ABP sensor

Thus far, we built an ECG alteration detector for each user
in the training group, based on the assumption that the
ABP measurements are trustworthy. Therefore, a natural
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question to ask at this point is can the signals be switched.
That is, if the ECG measurements are trustworthy, can
we build a detector for ABP alteration by leveraging the
relationship between ECG and ABP measurements using
the exact same approach? To test this hypothesis, once
again we set Tlearn = 10 min, w = 3 s, and k = 10
as the parameters to train a victim-specific ABP alter-
ation detector for each user in the training group.We then
used 10-fold cross-validation to evaluate the efficacy of
the detector built. We find that the ABP alteration detec-
tor had an average BAC rate of 96.63% with a FP rate
of 6.04% and FN rate of 0.71%. We also evaluated each
victim-specific ABP alteration detector based on its ability
to identify (1) yet unseen data from the same user and (2)
yet unseen data from another user in the training group.
Overall, when averaged over 33 detectors, we achieved an
average BAC rate of 93.96% (i.e., FN = 6.04%) in detect-
ing unmodified ABP data and 99.29% (i.e., FN = 0.71%)
in detecting alteration of user’s ABP with ABP measure-
ments from another user in the training group. We do not
provide results for the external group, as in the ECG alter-
ation case, because our dataset does not have ABP data
for the subjects in the external group. This demonstrates
that, by leveraging the fact that multiple physiological sig-
nals based on the same underlying physiological process
(e.g., cardiac process) are inherently related to each other,
we can build a detector to detect the alteration of a par-
ticular physiological signal by using another related phys-
iological signal that is trustworthy. Table 2 summarizes
the performance of our ECG data manipulation detec-
tor in detecting different alterations of the ECG and ABP
measurements.

8.5 Performance comparison with previous work
As mentioned in Section 2, our own previous work has
tackled the issue of data manipulation attacks in a lim-
ited way by focusing on detecting ECG sensor output

Table 2 Summary of security analysis performance

ECG scenarios Average BAC
rate (%)

ABP scenarios Average BAC
rate (%)

No replacement 96.22 No replacement 93.96

Replacement w/
training group
measurements

99.53 Replacement w/
training group
measurements

99.29

Replacement w/
external group
measurements

98.86

Replacement w/
unaltered synthetic
ECG

98.23

Replacement w/
altered synthetic
ECG

98.69

alteration as a result of data manipulation. We devel-
oped two separate models to detect the temporal and
morphological alterations of ECG measurements using
reference signals. Table 3 shows how our approach is
(i.e., image reconstruction-based detector) in compari-
son to our previous approach (i.e., ECG temporal and
morphological alteration detectors). We can see that with
respect to the no replacement case, our current approach
performs a little bit worse than our previous work. How-
ever, with respect to the situation where the ECG sensor
measurement is altered with other subjects’ ECG, our cur-
rent approach has a much higher detection rate. Most
importantly, this performance is achieved without feature
engineering nor characteristic feature (peaks) detection.
On the other hand, both our previous works [15, 16] rely
on (1) the need of the tedious and sometimes extremely
hard feature engineering process and (2) the presence of
peak detection algorithms or annotation files for locat-
ing the characteristic features. When such peak detec-
tion algorithms or annotation files are not available, the
performance of our previous approach will definitely be
much worse.

8.6 Discussion
Note that, in our results, we see that no replacement case
(i.e., no attack) fares much worse than the cases where
the data manipulation attack actually happens for both
ECG and ABP data manipulation detector. This means
that our approach is much better at capturing malicious
attacks at the expense of creating false alarms. This is not
a bad situation to be in for an attack detection system
for safety-critical systems. Given the potential extreme
consequences of missing a health event due to a data
manipulation attack, we believe it is much better to cause
a few false alarms which forces the clinicians to look
at the patient data when nothing is wrong rather than
miss an attack.
In our current design, the classifier is trained in a secure

location in an offline fashion with only the alert genera-
tion happening online. This requires the user to present
in a secure location for training purposes, such as in a
hospital in the presence of a medical care provider, before
the model being uploaded to the user’s base station. Mak-
ing this training process an online one is one of our
future work. Further, our approach relies on the inter-
relationship between ECG and ABP signals to operate. If
a patient’s physiology changes over time, the classifier has
to adapt as well. This means that the classifier has to be
re-trained every so often in order to capture the current
state of the patient’s health. One approach is to automate
the relearning, based on a schedule. However, choosing
the inter-relearning, interval has to be done carefully. Too
short an interval would lead to unnecessary relearning
and too long an interval would result in increased errors.
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Table 3 Comparison with our previous work for detecting data manipulation attacks on ECG sensor measurements

No replacement (%) Replacement w/
training group (%)

Replacement w/
external group (%)

Replacement w/
synthetic ECG (%)

Feature
engineering

Peak
detection
algorithm

Temporal detector [15] 97.56 99.35 N/A 91.07 Required Required

Morphological detector [16] 97.73 90.09 93.79 N/A Required Required

Image reconstruction-based detector 96.22 99.53 98.83 98.46 Not
required

Not
required

Determining the optimal classifier retraining frequency
for our work is a user-dependent parameter. For relatively
healthy users, the retraining need not happen often, while
for individual cardiac conditions, the training has to be
done more frequently depending upon the actual condi-
tion, how acute it is, and any medications they might be
taking. The calculation of optimal classifier retraining is a
non-trivial problem in its own right and out of scope for
this paper.
Finally, we demonstrated our approach by building (1)

an ECG alteration detection system using ABP signal as
reference and (2) an ABP alteration detection system using
ECG signal as reference. The success of both two systems
in detecting data manipulation attacks indicates that our
approach might be applicable on other types of physiolog-
ical signals. For example, it has been shown that plethys-
mography and ballistocardiography signals are also highly
related to ECG signal [36–39]. In our future work, we
plan to build the detection system for other different types
of physiological signals to demonstrate our approach is
generalizable.

9 Conclusions
In this paper, we presented a novel approach to detect data
manipulation-based alteration in WMS environments.
Our approach leveraged the idea that if we can cap-
ture the inter-relationship between several physiological
signals that measures the same underlying physiologi-
cal process, we can detect a unilateral change in one of
them assuming the other signal is not altered and can
be used as a reference. In this regard, we focused on the
cardiac process and showcased an ECG alteration detec-
tor that used ABP measurements. Our detector used an
image reconstruction-based classifier to extract the inter-
relationship between the ECG and ABP signals and uses
it to identify any unilateral changes in the ECG signal.
We validated our detector based on the replacement of
the actual user’s ECG measurements with other subjects’
ECG measurements and clinically relevant synthetic ECG
signals and demonstrated its (i.e., detector’s) efficacy in
identifying ECG alteration induced by data manipulation
attacks. Analysis of our detector demonstrated promising
results with over 98% accuracy in detecting alterations of
ECG measurements, within 3 s.

9.1 Future work
In the future, we plan to extend this work in several other
directions that are different from what we mentioned
before:

• First and foremost, we plan to address the strong
assumption in our work of having a trustworthy
reference sensor by building a more generalized
detector that does not make such assumptions and
can detect any signal alteration.

• Further, we plan to work on developing an approach
that can help us determine when to retrain our
detection models such that we can keep up with the
changing physiology of the user, over time.

• We also plan to find optimal ways to alert users into
action as a result of detecting data manipulation
attacks such that they can take the necessary
corrective action to minimize the impact of the
attacks. The response time to the alert is also critical
in real practice, and it depends on the situation, but
the sooner one reacts, the better for the user.

• To train each user-specific detection model, one
needs to collect positive class training data from a
variety of users. At this stage, it is not clear how many
such users are needed to make a generalizable case
for our detector. We are obviously limited by the
dataset we have access to. In the future, we plan to
find ways to determine what is the optimal sample
size of our dataset through approaches like statistical
power analysis.

• Finally, in this work, we have focused on the
developing and analyzing of a classification system
that can detect data manipulation attacks. We plan to
implement our proposed approach on an actual base
station platform (e.g., the amulet system [14]) and
evaluate the performance and computational cost.
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