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Abstract—In this paper, we present an approach to detecting
signal injection-based morphological alterations of ECG mea-
surements in Body Sensor Networks (BSN). Signal injection
attacks target, the usually unprotected, analog sensing interface
of the sensors in a BSN and induce arbitrary signals in them.
Signal injection is very dangerous because can be stealthily
mounted on unsuspecting BSN users from close proximity (for
example in a public place). Inducing morphological alterations
in ECG measurements can have profound consequences for
the user, as an adversary can easily make a person who is
experiencing cardiac arrhythmia appear to be normal and thus
cause immediate or long-term harm to their health.

To detect signal injection-based morphological alterations,
we leverage the idea that multiple physiological signals based
on the same underlying physiological process (e.g., cardiac
process) are inherently related to each other, i.e., have common
features. Any adversarial alteration of one of the signals will
not be reflected in the other signal(s) in the group. Therefore,
to detect the morphological alterations in ECG measurements,
we use arterial blood pressure (ABP) measurements. Both
ECG and ABP measurements are alternative representation
of the cardiac process. Our approach demonstrates promising
results with over 90% accuracy in detecting even subtle ECG
morphological alterations for both healthy subjects and those
with cardiac conditions.

I. INTRODUCTION

Body Sensor Networks (BSNs) have demonstrated great
potential in a broad range of applications in healthcare and
well-being. A BSN contains a number of diverse, low-cost,
wireless embedded sensing devices (henceforth referred to
as sensors) that form a distributed wireless network around
the user [1]. The sensors monitor various physiological
signals from the user and wirelessly forward them to a sink
entity, called the base station. The base station processes the
sensor measurements, displays them to the user, and may
forward the measurements to a medical cloud for long-term
storage and for access by caregivers.

Unlike traditional hospital-based medical systems, BSNs
allow their users to be ambulatory and go about their daily
lives. This makes them particularly susceptible to attacks
that can be mounted in proximity (within a few meters) to
the user. Numerous examples of proximity-based attacks
have already been reported including triggering malware

in a sensor by sending a specific combination of inputs
[2], fitness monitors like fitbit being loaded with malware
through open Bluetooth ports [3], and signal injection to
manipulate sensor measurements [4]. In this work we focus
on signal injection attacks. Signal injection attacks are
sensory-side-channel attacks that target the analog interface
of the sensors with the aim of inducing arbitrary signals
into the sensing circuitry through electromagnetic induction
(EMI). A direct consequence of a signal injection attack is
that leads to the sensor generating incorrect measurements of
the user’s health. In [4], the authors demonstrated the ability
of using EMI to induce arbitrary signals into the leads of an
electrocardiogram (ECG) sensor. This allowed the adversary
to misrepresent a potentially dangerous arrhythmia in the
user’s heart and report it as being normal. Similar signal
injection attacks have been seen in other domains as well
such as smartphones. For example, researcher were able to
obtain unauthorized access to Apple SIRI and Google Now
systems by inducing signals on the headphone chord of the
smartphone [5].

Signal injection attacks are especially dangerous for sev-
eral reasons. (1) They can introduce backdoors even in an
otherwise secure system by targeting the sensing interface,
which is typically not protected [4]. (2) They can be mounted
in a stealthy manner, for instances, in crowded areas such
as malls or concerts. In the context of BSNs, an adversary
mounting a signal injection attack affects the capability of
the sensors from collecting and forwarding the accurate
user health state. A successful signal injection attack can
lead to an adversary manipulating sensor measurements,
which then might lead to harm either from unnecessary
medical interventions by users or incorrect diagnosis and
treatment by the physician. It is therefore imperative that
signal injection attacks be detected as quickly as possible.

In this paper, we want to detect signal injection attacks
on ECG sensors in a BSN. We particularly focus on ECG
sensors because: (1) ECG is one of the most commonly
available sensors in a variety of medical monitoring BSNs,
and (2) it has already been demonstrably compromised
through signal injection as shown in [4]. In general, an
ECG measurement has two key characteristics that can



be manipulated by signal injection attacks temporal and
morphological [6]. The manipulation of temporal character-
istics involves modifying the timing information of the ECG
complex (e.g., inter-beat-interval), while the manipulation
of the morphological characteristics involves modifying the
shape of the ECG complex.

In our previous work [7], we proposed an approach
that can detect the malicious temporal alteration of the
ECG signal. It required building a model by correlating
different but correlated signals (arterial blood pressure and
respiration) to detect temporal ECG alterations. However,
the model developed was limited to features that captured
only the timing properties of the ECG signal and did not
have the ability to capture morphological alterations. Since
an adversary can change the morphological characteristics of
ECG signal without changing any temporal characteristics,
in this work our goal is to design an approach to detect the
morphological alterations of ECG measurements.

In this regard, we leverage the fact that different phys-
iological signals generated by the same underlying physi-
ological process are inherently correlated, i.e., they share
similar features among them. For example, electrocardio-
gram and blood pressure are different manifestations of
the cardiac process and the two signal time-series track
each other. To identify if the ECG sensor’s measurement
has been morphologically altered, we train a model, at the
base station, that captures the commonalities of the ECG
measurement with that of another correlated physiological
signal, the arterial blood pressure (ABP) signal. Under
normal situations, both ECG and ABP, which are measured
synchronously, produce features that are not observable
when the ECG signal is altered without a corresponding
change in the user’s physiology, thus indicating alteration.
The advantage of our detection approach is that it does not
require redundant ECG sensors nor does it rely on keeping
user medical history. Analysis of our approach demonstrates
promising results with over 90% accuracy in detecting
even subtle morphological alterations in ECG signals. The
contributions of this paper are three-fold: (1) the design of
an approach for morphological alteration detection in ECG
measurements, and (2) implementation of the detector using
real ECG and ABP data from the MIT PhysioBank database
[8], and (3) demonstration of the robustness of the approach
in the presence of a variety of (simulated) signal injection
attacks.

The rest of the paper is organized as follows. Section II
presents the related work. Section III discusses the system
and threat model along with the problem statement. Section
IV presents the background for ECG and ABP. Section V
presents the main idea of our approach. Section VI presents
the parameter selection process for our approach. Section
VII presents the security analysis. Finally, Section VIII
presents the conclusions. In the rest of the paper, we use
the terms subject and user interchangeably.

II. RELATED WORK

Not much work has been done in the domain of de-
tecting signal injection attacks. In [4] the authors present
several preventive solutions for signal injection attacks.
However, these solutions require the sensor hardware to
be upgraded through improved shielding and adaptive fil-
tering techniques, which is hard to do without increasing
the complexity and cost of the limited capability sensors.
Therefore, we need a detection solution that executes at the
base station (which typically has considerably more com-
putational power) and can identify signal injection attacks
through analysis of the measurements

Work on detecting anomalous sensor measurements has
largely focused on the benign case of fault detection. Fault
detection in sensors in a BSN has involved the adaptation
of sensor-redundancy-based methods from wireless sensor
network domain to the BSNs [9], [10], [11], [12]. However,
almost all the approaches are designed for motion and gait
monitoring BSNs, and these kinds of BSNs naturally require
considerable sensor-redundancies (multiple sensors of the
same type). In [13] the authors identify faults in a sensor by
correlating its data with different sensors measuring related
stimuli. Specifically, the paper focuses on detecting perma-
nent faults in ECG signals based on ventricular pressure
signals. Their approach builds a rule-table for various com-
binations of blood pressure and heart rates and determines if
the observed data fall within these expected bounds and, if
not, then the sensors are deemed faulty. This approach uses
a simple cardiac output model to determine the relationships
between heart rate and blood pressure, therefore it does not
work if an adversary deliberately replaces legitimate ECG
measurements with another signal having similar heart rate
characteristics.

Finally, in [14], we presented a very preliminary version
of morphological alteration detection approach. In this work,
we present a more complete picture with detailed security
analysis and performance results.

III. SYSTEM MODEL, THREAT MODEL, AND PROBLEM
STATEMENT

System Model: We assume the BSN consists of a number
of wearable medical devices (i.e., sensors) including ECG
and ABP sensors (See in Figure 1). These sensors are low-
capability devices that collect physiological data from the
user at regular intervals and forward that data to a highly
capable sink entity, which we refer to as the base station,
for processing and storage. The base station provides a root
of trust for our system. We assume it is not susceptible to
attacks. Sensors in a BSN typically connect with the base
station over a wireless network [15]. For the purposes of this
work, we assume the communication between the sensors
and the base station is trustworthy, and secure. This can be
achieved by deploying any of one of the numerous solutions
proposed to address the secure communication problem in
a BSN setting such as [15], [16], [17]. Consequently, any
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Figure 1: Body Sensor Network

alteration of the measurements has to occur at or near the
source (i.e., the ECG sensor).

Threat model: We assume the adversaries mounting
signal injection attacks posses the several characteristics.
(1) Adversaries are located in relative proximity to the user
(victim) and the attacks are mounted locally as opposed to
remotely over the Internet. (2) The adversaries are assumed
to be able to mount only scalable attacks, that is, indis-
criminate signal injection through EMI on ECG sensors in
the BSN. (3) Due to the non-targeted nature of the attacks,
the signal injection attacks are assumed to affect a subset
of the sensors in the BSN which does not include the ABP
sensor. (4) The non-targeted nature of the attacks, also means
that we assume the adversary has no prior information on
the user including their past medical history or records.
Morphological alterations can be implemented using signal
injection in three general ways: (1) by introducing arbitrary
noise to the original ECG measurements; (2) by replaying
historical ECG measurements stolen from the user in the
past as current measurements; and (3) by replacing the actual
ECG measurements with measurements belonging to another
user. In the case of introducing arbitrary noise, the user
and their caregivers will immediately be able to see the
noise and can therefore ignore the measurements. Replaying
historical ECG measurement would require adversaries to
access to a user’s past medical records, which they do not
have. Consequently, in this paper we focus on the third
case, where actual ECG measurements are replaced with
measurements belonging to another user.

Problem Statement: Our goal is to develop an approach
for detecting alteration of the morphological characteristics
of an electrocardiogram (ECG) measurement in a BSN using
a synchronously obtained measurement of an inherently
trustworthy reference sensor, the arterial blood pressure
(ABP) sensor.

IV. BACKGROUND

In this section, we provide some background information
on the principal signals that we consider for this work,
i.e., electrocardiogram (ECG), arterial blood pressure (ABP)
signals. ECG is the measurement of the electrical repre-
sentation of the cardiac process of a person. As shown in

Figure 2a, and ECG signal is made up of peaks and trough
combinations which is made up of five elements named
P, Q, R, S and T waves. The P wave is observed during
atrial depolarization (which causes the blood to be pushed
to the ventricles), the QRS complex is observed during the
rapid depolarization of the right and left ventricles (which
causes the blood to be pushed out of the ventricles and
into the lungs and the rest of the body), and the T wave
is the depolarization of the ventricles. The time difference
between two R peaks is known as an RR-interval. The RR-
interval refers to the beat-to-beat variations in heart rate and
is a measure of heart rate. Atrial blood pressure (ABP),
on the other hand, is the continuous measurement of blood
pressure and can be measured non-invasively [18] much like
ECG. As shown in Figure 2b, a typical atrial blood pressure
contains the trough which is diastolic blood pressure and
the peak which is systolic blood pressure. Diastolic troughs
occur near the beginning of the cardiac cycle and systolic
peaks occurs when the ventricles contract. As ECG and ABP
signals are both measures of the cardiac process and both
controlled by our autonomic nervous system and they track
each other. For example, an R peak in the ECG signal will
typically be followed by a systolic peak in the ABP signal as
both represent the compression of the ventricles that results
in the blood being circulated through the entire body via
the Aorta (see Figure 2c). Similarly, a pathologies in the
cardiac process that results in abnormal ECG wave form is
also reflected in the ABP signal [19].

V. APPROACH

In this section, we introduce our approach for the de-
tecting of morphological alterations of ECG sensor mea-
surements because of signal injection attacks. Our approach
works by training a user-specific supervised-learning model
that includes features that capture the inter-relationship be-
tween synchronously measured ECG and ABP signals from
a particular user. The model also includes features collected
from ABP measured from the user and ECG measured from
several different users (thus modeling the attack where a
user’s ECG is replaced with someone else’s as part of the
signal injection). Once the model has been trained, we then
use features from snippets of synchronously measured ECG
and ABP signals from the user and feed it into the model.
The model generates an alert if it determines that the signals
came from two different users. Figure 3 shows our system
setup. Its contains three main steps: (1) extracting features
that capture the inter-relationship between ECG and ABP,
(2) training a user-specific model, and (3) detecting altered
ECG measurements based on the newly received ECG and
ABP snippets.

As we are particularly interested in identifying morpho-
logical alterations shape of the ECG signal based on the
ABP signal, it is essential to be able to capture the shape of
the ECG and ABP signal in tandem. Inspired by the idea of
phase space reconstruction, which was originally used to de-
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Figure 2: ECG and ABP signal

lineate the nonlinear behavior of a dynamic system [20], we
generate a portrait of the ECG and ABP signals. A portrait
allows us to specify the instantaneous state of the the two
signals over time. We define a portrait as an n-dimensional
representation of the relationship of several time-series in
one multi-dimensional space. To generate a portrait, first,
we measure w time-units synchronously measured ECG and
ABP signals and normalize them. Normalization is needed
as the magnitude and units of ECG and ABP signals are
different. Formally, let a(t) and e(t) be the normalized
ABP and ECG signals at time t, where 1 ≤ t ≤ w. Then
we create a 2-dimensional portrait, P , through the function
f(t) = (a(t), e(t)), where again 1 ≤ t ≤ w. Figure 4
shows an example of a portrait of ECG and ABP signals
with annotations of where their characteristic peaks lie in it.
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Figure 3: Detecting Morphological Alterations of ECG
Sensor Measurements
A. Feature Extraction

Once a portrait is created, the next step is to extract
appropriate features from the portrait that captures the inter-
relationship between the ECG and ABP signals. Based on
the work in [21], [22], we extract a total of eight features.
We categorize these eight features into two different types
of features: (1) matrix features (three features) and (2)
geometric features (eight features).

Matrix Features: Matrix features describe the distribu-
tion of points in the portrait that capture the shape of the
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Figure 4: A typical ECG and ABP portrait

ECG signal with respect to the shape of the ABP signal. To
obtain these features, we view the portrait under an n × n
grid and count the number of points from the portrait that
fall into each cell in the grid. We store this information in an
n× n matrix, C, in which each element c(i, j) is the count
of the number of points in the corresponding grid element
(i, j), where i, j ≤ n. We chose n = 50 for generating the
matrix C. From the matrix C, we extract three features. (i)
Spatial Filling Index (SPI): to obtain the spatial filling index
we first generate a matrix S, from matrix C, given by (1).

S =


( c(1,1)

k )2 ( c(1,2)
k )2 . . . ( c(1,n)

k )2

( c(2,1)
k )2 ( c(2,2)

k )2 . . . ( c(2,n)
k )2

...
...

. . .
...

( c(n,1)
k )2 ( c(n,2)

k )2 . . . ( c(n,n)
k )2

 , k =

n∑
i,j=1

c(i, j)

(1)
Each element S(i, j) represents the square of the probability
that a portrait point falls into the grid (i, j). Then the spatial
filling index can be calculated as SPI =

∑N
i,j=1 Si,j .

(ii) Standard deviation of Column Averages of matrix C:
we calculate the column average of matrix C as H =[
1
n

∑n
i=1 Ci1

1
n

∑n
i=1 Ci2 . . . 1

n

∑n
i=1 Cin

]
. Given H

we take the standard deviation of the values of H . (iii) AOC
formed by the Column Averages: this feature is obtained by
computing the integral of the curve that H forms.



Geometric Features: Geometric features describe the
absolute and relative location of certain characteristic points
of the signals in the portrait. The characteristic points are
the points that represent the important characteristics of the
signal. For example, the characteristic points can be the
important peaks and troughs in the signal, such as P, Q, R, S
and T points in the ECG signal, systolic and diastolic points
in the ABP signal; or simply the consecutive points near the
R peak in the ECG signal and the consecutive points near the
systolic peak in the ABP signal. These geometric features
captures how well the two signals track each other, which
they should given the emanate from the same physiological
process. In this work we only use geometric features-based
on two characteristic points, the R peaks in the ECG signal
and the systolic peaks in the ABP signal as they were
sufficient distinguishing power by effectively capturing the
state of the two signals.

To identify where the characteristic points lie in the
portrait, we first perform peak detection for each w seconds
synchronously measured ECG and ABP signals, to get
both R peaks and systolic peaks and label them. Note
that, depending upon duration of w, the portrait can have
multiple characteristic points from ECG and ABP in it.
Overall, we extract five geometric features based on the
labeled characteristic points in the portrait. (i) Average of the
Angles (w.r.t. x-axis) between R peaks: let (xr, yr) denote
an R peaks in a portrait and m denote the total number
of R peaks in a portrait, then the average of the angles
for the R peaks is given by 1

m

∑rm
i=r1

arctan((xi, yi)). (ii)
Average of the Angles (w.r.t. x-axis) between Systolic peaks:
let (xs, ys) denote the systolic peaks in a portrait and q
denote the total number of systolic peaks in a portrait, then
the average of the angles for the systolic peaks is given by
1
q

∑sq
i=s1

arctan((xi, yi)). (iii) Average Distance between R
peaks and the Origin: let (xr, yr) denote an R peaks in a por-
trait and m denote the total number of R peaks in a portrait,
then average distance is given by 1

m

∑rm
i=r1

√
(x2

i + y2i ). (iv)
Average Distance between Systolic peaks and the Origin:
let (xs, ys) denote the systolic peaks in a portrait and q
denote the total number of systolic peaks in a portrait, then
the average distance is given by 1

q

∑sq
i=s1

√
(x2

i + y2i ). (v)
Average Distance between the R peaks and their correspond-
ing Systolic peaks: typically, there is one systolic peak is
preceded by one R peaks, therefore, for a R peak (xri , yri),
let (xsi , ysi) denote the corresponding systolic peak, where
1 ≤ i ≤ m. Then, the average distance between the R
peaks and their corresponding systolic peaks is given by
1
m

∑m
i=1

√
(xri − xsi)

2 + (yri − ysi)
2

B. Model Training

We use a supervised-learning-based approach to construct
(train) the user-specific model, which requires as input
two classes of 8-dimensional feature points referred to as
negative and positive class points. The negative class points
capture the situations where the ECG and ABP originate

from the same user, while the positive class points capture
the situations where the ECG of the user is replaced with
someone else’s. In this regard, we collect ∆ time-units of
synchronously measured ECG and ABP signals from the
user whose model we are training. The feature extraction
for the negative class points is done by sliding window of
size w < ∆, over the time-series of the ECG and ABP
signals. Each w sized window of data produces one portrait,
and one 8-dimensional feature point is then generated from
this portrait. To generate positive class points, we build
portraits using ∆ minutes snippets the user’s ABP and ECG
belonging to several different users, and then extract 8-
dimensional features by sliding a window of size w over the
time-series. Once the negative and positive class points are
collected, we feed them into a machine learning classifier
to generate a user-specific model. In this paper, we used
a polynomial kernel-based Support Vector Machine (SVM)
as our machine learning classifier. We chose SVM because
it is well understood, relatively easy to understand, and
has excellent tool support, properties that are essential for
implementation of limited capability base stations where the
model will be executing.

C. Generating Alerts

Once the model is trained, we can then use the trained
model to decide if any newly received snippet of ECG
measurements have been maliciously altered in the morpho-
logical sense. In this regard, we collect w time-units of newly
measured ECG and ABP signals from the user, generate a
portrait and extract the 8-dimensional feature from it. Then
we feed this feature point into the user-specific model. The
model will then output a positive or negative label for this
feature point. If the feature point is deemed to be positive,
we consider this w second ECG signal snippet to be altered
and alert the user.

D. Model Retraining

Our approach relies on the inter-relationship between
ECG and ABP signals to operate. If a patients physiology
changes over time, the models have to adapt as well.
In our current design, the model is trained in an offline
fashion with only the alert generation happening online.
This means that the model has to be re-trained every so
often in order to capture the current state of the patients
health. One approach is to automate the re-learning based on
a schedule. However, choosing the inter-relearning interval
has to be done carefully. Too short an interval would lead
to unnecessary re-learning and too long an interval would
result in increased errors. Determining the optimal model re-
training frequency for our work is probably a user dependent
parameter. For relatively healthy users the retraining need
not happen often, while for individual cardiac conditions, the
training has to be done more frequently depending upon the
actual condition, how acute it is, and any medications they
might be taking. The calculation of optimal model retraining



is a non-trivial problem in its own right and out of scope
for this paper.

VI. PARAMETER SELECTION

In this section, we illustrate how we select the two most
important parameters of our system ∆, the amount of data
needed to train the model (i.e., training time), and w, the
amount of data needed to test for malicious alteration of
ECG signals (i.e., testing time). We begin with a discussion
our dataset, followed by performance metrics for identifying
how well we are performing for various parameter choices.
Finally, we discuss the parameter selection itself.

A. Dataset

In this work, we collected data belonging to 26 sub-
jects (i.e., users) from the MIT PhysioBank Fantasia and
MGH/MF database [8]. We chose these particular sub-
jects from these databases because the availability of both
ECG and ABP signals for them. Furthermore, the Fantasia
database is made up of healthy subjects, while the MGH/MF
database mainly contains data from subjects with specific
cardiac conditions. We searched the MGH/MF database to
specifically choose subjects whose cardiac condition mani-
fested itself in morphological variation in the measured ECG
signal (e.g., atrial fibrillation, ectopic beats etc.). Table I
shows the statistics on the patient population we used to train
and test our ECG morphological alteration detectors. We cat-
egorized the patients in the dataset into two types based on
their ECG signals: (1) Normal subject, which only includes
subjects who did not suffer from any ailments and had a
normal sinus rhythm ECG; (2) Abnormal subject, which
only includes subjects whose ECG showed morphological
abnormalities. For each of the 26 subjects we had on average
about 41 minutes of usable ECG and ABP data. From these
26 subjects, we picked 18 subjects (9 normal subjects and
9 abnormal subjects) to form a group G, referred to as the
training group. The data for the subjects in the training group
is used for training and validation of the model. We used
the remaining 8 patients (3 normal subjects and 5 abnormal
subjects) to form a group H , referred to as external group,
which is used for testing our model’s detection capabilities.

Table I: Subject Data Summary

Type
Total

#
Male Female

Avg. Age

(years)

Std. Age

(years)

Normal 12 5 7 46.5 25.5

Abnormal 14 8 6 73 7.9

B. Metrics

We use the following metrics to train our model and
validate it: false positive rate, false negative rate, and bal-
anced accuracy rate. We define false positive rate (FP) as
the fraction of the cases in which an unaltered ECG sensor
output is misclassified as altered. Similarly, we define false

negative rate (FN) as the fraction of the cases where an
altered ECG sensor output is misclassified as unaltered.
We define balanced accuracy rate (BAC) as the sum of
half of the true negative rate (the fraction of the unaltered
ECG sensor output properly classified as unaltered) and half
of the true positive rate (the fraction of the altered ECG
sensor output properly classified as altered). The reason we
use BAC is that it avoids inflated performance estimates
on imbalanced datasets [23]. This is important given that
we have an imbalanced sample with many more positive
examples than negative examples during the training phase.
Even though we compute these metrics for each subject
in our dataset, we validate our approach using summary
statistics of these metrics over all subjects.

C. Selecting Training and Testing Times

Given the safety-critical nature of signal injection attacks
on BSNs, we want to detect potential alterations to the ECG
signals very quickly in order to avoid harm to the user.
Therefore we need to minimize w which establishes the time
elapsed between the alteration of the measurement and its
detection. Further, even though the training is offline, we
need to make sure that it can be done quickly so that the
user need to endure long interruptions in BSN operation.
Consequently, the training time (∆) has to be as short as
possible as well.

To see which window size, w, works best, we set ∆ to a
fixed value of 20 minutes and test our ECG morphological
alteration detector with the data from users in the training
group. We tried several values for w and eventually settled
on 3, 6, and 9 seconds. This is because values smaller than
3 seconds did not capture each meaningful features from
the portraits produced, and values of 10 seconds and greater
were considered too slow for detecting safety-critical attacks.
For each window size, w, we generated a set of negative
class feature points by using 20 minutes of synchronously
measured ECG and ABP signal from the same subject. We
generated the set of positive class feature points by com-
bining each subject’s ABP snippet with a randomly selected
ECG snippet from every other subject in the training group.
The resulting negative and positive class feature points were
then fed into SVM classifier for training purposes. We used
10-fold cross-validation to validate the model trained. Table
II shows the average BAC, FP, and FN for different window
sizes, w. We can see that the average BAC rate of the
subject-specific models for three different window size w are
all considerably high. Overall, we can see that the balanced
accuracy rate of the ECG morphological alteration detector
when we set w from 3 seconds to 9 seconds, is only slightly
worse off. We therefore chose w = 3 seconds, as it provided
us with the best responsiveness for our detector.

To select the training time, ∆, we evaluated our detector
by training it for 3 different durations: 10, 15, and 20
minutes (with a fixed w = 3 seconds). Again, for each value
of ∆, we generated a set of negative class and positive class



Table II: Balanced Accuracy Rate for Different w with fixed
∆ = 20mins

Window Size w Avg. FP Avg. FN Avg. BAC

3 secs 5.33% 5.11% 94.78%

6 secs 5.64% 1.73% 96.32%

9 secs 6.37% 1.02% 96.31%

feature points using data from group G. Then we used SVM
classifier to train the subject-specific model for each patient
in group G, respectively. We used 10-fold cross-validation to
validate the model built. Table III shows the average BAC,
FP and FN for different values of ∆. Overall the difference
in accuracy for the three different ∆ value is 1.5% when we
move from 10 minutes to 20 minutes, however FP and FN is
comparably low when we set ∆ as 20 minutes. Further, the
more data we have the better models we can create overall.
Hence, we set ∆ = 20 while training our model.

Table III: Balanced Accuracy Rate, FP and FN for Different
∆ with fixed w = 3secs

Training Data ∆ Avg. FP Avg. FN Avg. BAC

10 mins 9.44% 2.63% 93.96%

15 mins 5.37% 3.61% 95.51%

20 mins 5.33% 5.11% 94.78%

Figure 5 and 6, show the box-plots for balanced accuracy
(BAC), false positive (FP) and false negative (FN) rates
when we performed 10-cross-validation of the detector of the
morphological alteration of ECG data using user data from
the set G given ∆ = 20 minutes and w = 3 seconds. We see
that the Abnormal subject group has a slightly higher spread
compared to the Normal subject group with respect to the
reported BAC, FP and FN. This is reasonable as the Normal
subject group consists only of the subjects with a Normal
Sinus Rhythm, however, the patients in Abnormal subject
group have various types of ECG signals. For Normal sub-
jects, our detector provides a 96.41% BAC on average with
an average false positive rate and an average false negative
rate at 6.39% and 0.79%, respectively. Not surprisingly the
performance degrades slightly when we consider subjects
with cardiac conditions. For Abnormal subjects, the average
BAC rate is 93.56% with an average false positive rate
and an average false negative rate at 7.22% and 5.65%,
respectively. Overall, the validation results show that the
model trained by the morphological alteration detector is
very accurate with a 94.78% BAC on average with an
average false positive rate of 5.33% and an average false
negative rate of 5.11%. Given the model, we next present
the security analysis of our approach by simulating various
signal injection attacks on the ECG sensor that results in
morphological alteration of the its measurements.
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Figure 5: Validation of ECG Morphological Alteration
Detection w.r.t. BAC
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Figure 6: Validation of ECG Morphological Alteration
Detection w.r.t. FP and FN rates

VII. SECURITY ANALYSIS

In this section, we first address the viability of our
approach in detecting signal injection attacks on ECG sen-
sors that result in the morphological alteration of the ECG
measurement. As mentioned earlier in the threat model,
with respect to signal injection attacks we are focusing on
detecting the scenarios where adversaries replace the original
user’s measurements with that of another user. In this regard,
we attacked the 18 user-specific models we trained. Our
approach works through analysis of ECG measurements at
the base station. We therefore simulated the signal injection
attack on a sensor in two ways. (1) We simulated a signal
injection attack that resulted in the replacement legitimate
ECG measurements of a user with that of another user
in the training group (i.e., users in the set G). (2) Here
we simulated a signal injection attack that resulted in the
replacement legitimate ECG measurements of a user with
that of users in the external group (i.e., users in the set H).



Before we delve into the attack details, we introduce two
key notation used in this section. We define Tlearn as a time
interval for which we collected ECG and ABP data from a
user to build their detection model. The duration of Tlearn

is the same as the training time ∆, i.e., 20 minutes. Tcurr is
the current time interval when we are utilizing our approach
to detect ECG measurement alterations. For our analysis we
set Tcurr to 15 minutes and we assume that an adversary
alters the entire Tcurr interval of ECG measurement. Note
that, since our testing time is only 3 seconds, as long as
the adversary replaces 3 seconds or more of actual ECG
measurement, we should be able to detect it.

A. Evaluating the accuracy of the model

We first tested our approach to see if it can correctly
classify a user’s ECG signals after the user-specific model
is trained. This is very important to ensure that our trained
user-specific model is accurately able to identify yet unseen
data from the same user. Therefore, for each user, we
obtained Tcurr = 15 minutes of synchronously ECG and
ABP signals. The two resulting signal time series were
then divided into 300, 3-second intervals, each of which
produced a portrait and one 8-dimensional feature point.
These 300 feature points were then input into the model,
which then labeled them as positive or negative. Ideally, we
should get all negative labels for the points, as they are
from the same user. Overall, when average over the 18 user-
specific models, our approach achieved an average detection
accuracy rate of 97.37% in detecting unmodified ECG data,
which demonstrates that our approach indeed has a low false
alarm rate. This result also shows that in most cases the ECG
and ABP signals did not change over time demonstrating that
the model learned in an accurate representation of the user’s
cardiac process.

B. Replacement using Measurement from Training Group

We next consider the case where the attacker modifies
Tcurr duration of a user’s ECG time-series with ECG
measurements from another user in the training group G.
This experiment simulates the case where the adversary has
access to the ECG measurements of users in the training
group. Thus, for a given user, we replaced each of the
consecutive 3 second ECG snippets in their Tcurr with
a randomly selected 3-second ECG measurement snippet
obtained from a randomly selected user in the training group.
The modified ECG measurement was then fed into the user-
specific model along with the legitimate (i.e., unmodified)
ABP signal measured in Tcurr for the user. The model
then produced a label for each 3-second ECG snippet of
the modified ECG measurements. In aggregate over all our
18 user-specific models, our approach achieved an average
detection accuracy rate at 93.79%. This demonstrates that
even if an adversary has access to the ECG data of the
subjects from the training group G, our approach can still
detect it with considerable accuracy.

C. Replacement using Measurement from External Group

We then consider the case where the attacker is modifies
Tcurr duration of a user’s ECG time-series with ECG
measurements from another user in the external group H .
This experiment simulates the case where the adversary
replaces legitimate ECG measurements with those of yet
unseen users. Thus, for a given user, we replaced each of
the consecutive 3 second ECG snippets in their Tcurr with a
randomly selected 3-second ECG measurement snippet ob-
tained from a randomly selected user in the external group.
The modified ECG measurement was then fed into the user-
specific model along with the legitimate (i.e., unmodified)
ABP signal measured in Tcurr for the user. The model
then produced a label for each 3-second ECG snippet of
the modified ECG measurements. In aggregate over all our
18 user-specific models, our approach achieved an average
detection accuracy rate at 90.09%. This demonstrates that
even an adversary has access to the ECG data of the subjects
from the external group H , our approach can still detect
it with considerable accuracy. It is not surprising that the
performance of this case is a little worse than the previous
case, because the adversary is trying to feed heretofore-
unseen ECG measurements into the model. However, the
detection accuracy loss is little, demonstrating the robustness
of our model and our approach.

Table IV summarizes the performance of our ECG signal
injection detector.

Table IV: Summary of Security Analysis Performance

Attack Scenario Detection Rate

No Replacement 97.73%

Replacement w/ Training Group Measurements 90.09%

Replacement w/ External Group Measurements 93.79%

VIII. CONCLUSIONS

In this paper, we presented a novel approach to detect
signal injection-based morphological alteration of ECG mea-
surements in a Body Sensor Networks (BSN). Our approach
leveraged the similarity of ECG to another signal that
measure the cardiac process, arterial blood pressure signal,
and building a model for it. Analysis of our approach demon-
strated promising results with 90% accuracy in detecting
ECG morphological alterations. In the future, we plan to ex-
tend this work in several directions. (1) To build a combined
detector for both temporal and morphological alterations of
ECG measurements. (2) To implement the detectors on an
actual base station platform such as the amulet system [24]
and evaluate the performance and computational cost. (3)
To find optimal ways to alert users into action as a result of
detecting signal injection attacks.
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