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Abstract—Patient identification is crucial in providing proper
care in hospitals or other care-facilities. Failure to correctly
identify patients can result in a variety of problems such
as medication errors, transfusion errors, testing errors, and
duplication of EHR records. The current solutions for identifying
patients in a hospital setting rely on confirming the patient’s
identity several times, the use of labels, bar-codes, and RFID tags.
However, these solutions are not always sufficient and patient
identification errors are common.

In this paper we present a patient identity verification
approach that can complement existing patient identification
solutions in the event that they cannot be relied upon. Our
approach works by fusing common physiological signals (vital
signs) already collected from the patients. The idea is to fuse
two physiological signals electrocardiogram (ECG) with arterial
blood pressure (ABP) to identify an individual patient. Existing
identification/authentication solutions based on cardiac signals
have been primarily tested on healthy patients whose signals
exhibit normative rhythm and morphology. However, in our
context not all patients can be expected to have normative cardiac
signals as many of them may be suffering from ailments that
affect the cardiac process. The fusion of multiple ECG and ABP
allows us to ensure patient identification even when the patients
have ailments that affect their cardiac rhythms. An evaluation of
our approach showed that it is over 97% accurate in identifying
patients with non-normative cardiac rhythms and morphology
with over 99% accuracy for patients whose cardiac rhythms
are normative. Further, our approach can identify a patient in
as little as 3 seconds, which makes it practical in real-world
scenarios.

I. INTRODUCTION

Patient identification is crucial in providing proper care
in hospitals or any care-facility. Failure to correctly identify
patients can result in medication errors [1], transfusion errors
[2], testing errors, wrong person procedures [3], duplication of
EHR records [4], adverse drug events [5], and even discharging
of infants to the wrong families [6]. The current solutions for
identifying patients in a hospital setting rely on confirming the
patient’s identity several times during the course of a patient’s
stay/visit to the hospital and the use of wrist-band (bar-
codes) and RFID tags. However, these solutions have not been
sufficient and patient identification errors are common [1].
Errors in patient identification occur for a variety of reasons
including: (1) human error, e.g., mistyping traditional patient
identifiers, such as oral demographic data, social security
numbers, and patients’ addresses; (2) inability of the patients
to provide the required identification, e.g., when the patient is
brought in comatose to an ER; and (3) absence of required
identifiers such as lost or damaged wrist-bands assigned to
patients. Patient identification errors threaten to harm patient

safety, impact hospital revenues and profit, and opens them up
for law-suits.

One solution to address this problem is to perform patient
identification using physiological signals-based biometrics.
Such solutions can be used to complement the existing user
identification approaches being used. Therefore, if during the
course of a hospital visit, caregivers are not able to identify the
patient due to some of the aforementioned reasons or need to
verify/confirm the identify of a patient, they can rely on the use
of physiological signals-based biometrics. It has been shown
in the past that physiological signals collected from individuals
can uniquely identify people (authenticate). Examples include
electrocardiogram (ECG) [7], plethysmogram (PPG) [8], and
electroencephalogram (EEG) [9]. The use of physiological
signals for identification/authentication arose because they are
difficult to spoof and do not require traditional input modali-
ties, such as those based on based behavioral cues (e.g., voice,
touch or gestures), input entry (e.g., passwords) or special
hardware as with traditional biometrics (e.g., fingerprint/iris
scan).

However, traditionally, identification/authentication solu-
tions based on physiological signals are largely designed for
and validated on a generally healthy patient population. It is
not clear how well these solutions perform when the patient
population has ailments that cause their physiological signals
used in their identification to be “non-standard”. In a hospital
context, this assumption of patient “healthiness” is almost
always wrong. Consequently, we need an identity verification
solution that works for patients whose physiological signals
are normative, as well as patients that suffer from ailments
that result in the distortion of the physiological signal being
used to verify their identity.

In our previous work, we proposed an approach that fuses
characteristics of two commonly measured physiological sig-
nals, ECG and arterial blood pressure (ABP) to authenticate
(uniquely identify) patients in a health-context independent
manner [10]. However, our approach had one major disadvan-
tage. In order to be able to build an authentication model for a
patient, it relied on extracting characteristic features from the
ECG and ABP signals, such as, the location and magnitude
of the R peaks and systolic peaks, respectively. For patients
with normative ECG and ABP, we were able to utilize standard
peak detection algorithms such as [11], [12]. For patients with
physiological signals that were non-normative, however, there
are no good ways to capture the characteristic features that we
needed. Consequently, we had to rely on annotations in the
dataset to identify the characteristics features. The availability



of such annotations however, is not realistic and we need to
find a way to capture the characteristics of the ECG and ABP
signals without relying on locating such characteristic features.

Consequently, in this work, our approach removes the need
of detecting any characteristic features in the ECG and ABP
signals by viewing these signals as images. We basically create
two different classes of images that captures: (1) the inter-
relationship between ECG and ABP signals from a patient for
whom we are building the model; (2) the inter-relationship
between ECG and ABP signals from several other patients.
We then build an image reconstruction-based classifier that
can classify these two classes of images by leveraging the
Principal Component Analysis (PCA) technique. The use of
PCA allows us to leverage the unsupervised learning of the
ECG and ABP shapes rather than relying on the locating the
characteristics features in the signals.

An analysis of our approach based on a dataset of 36 pa-
tients from the MIT PhysioBank Fantasia and MGH databases
[13] shows that we achieve similar results to our previous
work, with over 97% accuracy in verifying the identity of
patients with non-normative cardiac rhythms and morphology,
and over 99% accuracy for patients whose cardiac rhythms
are normative. Even though the results are no objectively
better than our previous work, the fact that we do not rely
on mechanisms for identifying characteristic features in the
physiological signals makes this work much more practical in
real-world scenarios.

The rest of the paper is organized as follows. Section
II presents the related work. Section III presents the prob-
lem statement and the system model. Section IV presents
the approach, followed by Section V which describes the
parametrization of the the models we developed in the ap-
proach. Section VI then presents the performance evaluation
of our approach and finally Section VII concludes the paper.

II. RELATED WORKS

Physiological signals have often been used for patient
identification purposes in the recent past. Approaches have
been proposed that utilize electrocardiogram (ECG) [7], [14],
[15], [16], [17], photoplethysmogram (PPG) [8], bioimpedence
[18], heart-rate [19], and electroencephalogram (EEG) [9] for
identification. Most of these efforts have focused on creating a
template for an individual based on characteristic points in the
signal waveforms followed by statistical or machine learning
approaches for authenticating (i.e., one-versus-all identifying)
the individual. Work has also been done where more than one
physiological signals have been used to authenticate patients.
These approaches are usually an extension of the single signal
identification solutions, in that, they perform identification
based on a primary signal while using the rest of the signals for
artifact removal. For example in [20] the authors combine ECG
with EEG signals for improving the ECG-based identification
in the presence of artifacts such as movements [21], [22].

None of these solutions have been shown to work for in-
dividuals whose ailments affects the very physiological signal
that is being used for identification. In [23], [24], the au-
thors attempt to consider individuals with normative and non-
normative physiological signals to evaluate their identification
approach. However, these approaches produce relatively low
accuracy and high false negative rates. In our own previous

work [10], we developed an approach to identify individuals
based on the fusion of ECG and ABP signals. Unlike the
multi-signal approaches of the past, our approach looks at both
ECG and ABP signals in tandem and depends on fusing both
signal features together to perform identification. Our approach
achieves high accuracy rate irrespective of the current state of
the individual’s physiological signal. This approach depends
on knowing where certain characteristic features (i.e., peaks)
of ECG and ABP signals lie along with their inter-relationship.
However, locating these characteristic features on the physio-
logical signals, in general, is a difficult problem. Often finding
the characteristic features for individuals, whose physiological
signals vary dramatically from the norm, is very error prone.
This makes our previous effort not very practical. In this work
we remove the need of having to find characteristic features
when using ECG and ABP signals in tandem for identification
of individuals.

III. SYSTEM MODEL AND PROBLEM STATEMENT

Our system model consists of a scenario where a patient
arrives at a hospital/care-facility and we want to be able to
identify them. Such patients are assumed to be hooked on
to vital signs monitors that collect a variety of physiological
signals from them including ECG and ABP. These vital signs
monitors can be bed-side patient monitoring or using wearable
medical systems such as [25]. The data collected from the
ECG and ABP devices is sent to a medical cloud for analysis
and user identification. We assume the data transfer from the
medical devices to the cloud is secure.

The problem we are addressing in this work is to use the
fusion of ECG and ABP signal features for identification in
a manner that makes no assumption regarding the normative
nature of the physiological signal. In this regard, we want to
be: (1) accurate with low false positive and false negatives,
and (2) quick to identify the patient.

IV. APPROACH

In this section, we introduce our approach for identifying
a patient using electrocardiogram (ECG) and arterial blood
pressure (ABP) signals. The goal is to build a system that
complements existing patient identification solutions deployed
in hospitals and care-facilities, such that, we can rely on it in
case existing patient identification process fails or if it cannot
be trusted. That is, our approach can be used to confirm the
identity of a patient.

Fig 1 shows our system setup. It works in two stages: en-
rollment stage and identity verification stage. In the enrollment
stage, we first build a patient-specific model that captures their
physiological uniqueness. We do this by creating two classes
of images that capture: (a) the inter-relationship between
synchronously measured ECG and ABP measurements from
a particular patient; and (b) the inter-relationship between
synchronously measured ECG and ABP measurements from
several other patients. We then perform Principal Component
Analysis (PCA) on the two classes of images to generate two
sets of principal components (PCs). Based on the two sets
of PCs, we create a patient-specific, image reconstruction-
based classifier (i.e., a decision function). During the identity
verification stage, we collect a short snippets of current ECG
and ABP signals from an unknown patient we are trying to
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Fig. 1: The ECG and ABP based Identity Verification Approach
identify. We create an image that captures the inter-relationship
between the two signal snippets and feed it into the patient-
specific model. The model then produces a label for this new
image which allows us to confirm the identify of the patient
(see Figure 1). We describe the two steps in detail below.

A. Enrollment Stage: Creating Positive and Negative Images

Before introducing the idea of an image that captures the
inter-relationship between ECG and ABP signals, we first
introduce the notion of a portrait, based on which we create
our images. A portrait allows us to specify the instantaneous
state of the the two signals over time [26]. Let abp(t) and
ecg(t) be the normalized ABP and ECG signals at time t,
where 1 ≤ t ≤ w, where w is the length of both ECG and
ABP snippets. Then, the portrait P can be calculated using the
function f(t) = (abp(t), ecg(t)). Figure 2a and 2b show an
example of creating a portrait from the ECG and ABP snippet.

Once a portrait P is created, we create an image I by
taking a graphical view of portrait at a certain resolution.
This image depicts the trajectory formed by ECG and ABP
signals in the two-dimensional space. We first view portrait as
an n×n grid, where each element of the grid records whether
there are any points from the portrait that fall into it. Then
based on this grid, we can create a binary matrix with size of
n × n, where the element I(x, y) of the matrix equals to 1
or 0, indicating there is at least one point that falls into the
corresponding grid element (x, y), or no points that fall into
the corresponding grid element (x, y). In this work, we chose
n = 50 for generating the matrix, as it allows us to capture
the required inter-signal relationship without overly increasing
the complexity of resulting image. This binary image matrix
with n×n elements is what we refer to as image I . Figure 2b
and 2c show an example of creating an image based on the
portrait of ECG and ABP signals.

During the enrollment stage, we create two classes of
images: (1) the positive class images, which are created by
sliding window of size w < ∆, over the synchronously
measured ECG and ABP signals from the patient whose
classifier we are training; (2) the negative class images, which
are created by sliding window of size w < ∆ minutes
synchronously measured ECG and ABP signals belonging to
several other different patients. Each w-sized window of data
produces one portrait and therefore one image. Consequently,
both negative and positive classes have a series of images.

B. Enrollment Stage: Learning an Image Reconstruction-
based Classifier

Inspired by [27], we build a classifier for identifying patient.
In this regard, we perform Principal Component Analysis
(PCA) on the series of images in both classes to obtain two
different sets of principal components (PCs). The set of PCs
generated from the images in a class will preserve important
characteristics of that class. Let each column vector ci with
a length of n2 to represent each image in a class. Then, a
covariance matrix Cov can be generated as follows:

Cov =

m∑
i=1

(ci − c̄)(ci − c̄)T , (1)

where m is the total number of images in a class, and c̄ is the
mean of the column vectors of these images in that class.

The set of PCs are then generated by finding the first k
eigenvectors of the covariance matrix Cov, which then forms
a projection matrix P , where each row of P is an eigenvector.
In this work, we set k = 10 as we tried different numbers and
it works best for us. Therefore, from two classes of images
we generate two covariance matrices, two sets of PCs and
two projection matrices, which capture all the major variations
observed in the images of each class.
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Fig. 2: An Example of Portrait and Image Created by Using ECG and ABP Snippets
The next step is to build a decision function for classifying

which class a newly received image x, obtained from yet
unseen ECG and ABP snippet, belongs to. This decision
function essentially assigns the label of the image x by
comparing which set of PCs (from a class) can reconstruct
the image x the best.

To reconstruct an image using PCs obtained from the images
of a given class, we first project the image x on the eigenspace
as:

p = P (x− c̄). (2)

We then try to recover the original image from this projection
as follows:

x′ = PT p + c̄ = PTP (x− c̄) + c̄, (3)

where x′ is the reconstructed image based on the set of PCs
from a class.

As we have two sets of PCs, we obtain two reconstructed
images x′

pos and x′
neg . Then, we compute the reconstruction

error, by calculating the Euclidean distance between the
reconstructed image (using the set of PCs of a given class)
and the original one. We represent the reconstruction error as
epos and eneg , which can be calculated as follows:

epos =
∣∣x′

pos − x
∣∣

eneg =
∣∣x′

neg − x
∣∣ (4)

Finally, based on these two reconstruction errors, we build our
decision function which outputs the label of this image x as
either positive or negative:

label(x) =

{
Positive, if epos − eneg < 0
Negative, if epos − eneg ≥ 0

(5)

The two sets of PCs and the decision function thus form our
image reconstruction-based classifier. This classifier is patient-
specific and needs to be generated for each patient individually.
Consequently, it is not efficient to use our approach to identify
a patient from all the others but rather confirm the identify of
a patient.

C. Identity verification Stage
In the identity verification stage, the trained patient-specific

classifier will be used to decide whether the newly received
snippet of the ECG and ABP measurements belong to a
particular patient or not. In this regard, we collect w time-
unit of newly measured ECG and ABP signals from the
patient, and then create a test image. We feed this test image
into patient-specific, image construction-based classifier. As

we have a classifier for each patient in the system, which
classifier we feed our test image to will depend on who we
suspect the patient to be. In this regard, we first computes two
reconstructed images from this input test image using the two
projection matrices and the two means of the column vectors
(obtained using the series of images from two classes during
the enrollment stage). By comparing the input test image with
its two reconstructed images respectively, two reconstruction
errors are generated. Based on these two reconstruction errors,
our model uses its decision function to decide the label of the
test image as either positive or negative. If the test image is
deemed to be positive, then we have verified the identity of
the patient otherwise not.

V. PARAMETER SELECTION

In this section, we illustrate how we select the two most
important parameters of our identity verification approach: (1)
∆, the amount of the data needed to train the model (i.e.,
training time), and (2) w, the amount of data needed to be able
to make an identity verification decision. We begin with an
introduction of the dataset we used, followed by performance
metrics used to choose the two parameters. Finally, we discuss
the parameter selection process itself.

Dataset: In this work, we collected data belonging to 36
subjects (i.e., patients) from the MIT PhysioBank Fantasia and
MGH/MF databases [13]. We chose these particular subjects
from these databases because the availability of both ECG
and ABP signals for them. Furthermore, the Fantasia database
is made up of subjects who exhibit normative ECG and
ABP, while the MGH/MF database mainly contains data from
subjects with specific cardiac conditions that affect their ECG
and ABP signals (such as sinus tachycardia, atrial fibrillation
and etc. ). Table I shows the statistics on the patient population
we used to train and test our ECG plus ABP identification
system. We categorized the patients in the dataset into two
types based on their ECG signals: (1) Normative subject type,
which only includes subjects who did not suffer from any
ailments that affect their cardiac rhythm; (2) Non-normative
subject type, which only includes subjects who are suffering
from the cardiac diseases and thus may have non-normative
ECG and ABP signals. For each of the 36 subjects we had on
average about 40 minutes of usable ECG and ABP data for
our experiments.

Metrics: In this work, we formulated the problem of
identification as an instance of a binary classification task. To
evaluate the classification performance, the metrics are based
on the notion of false positive rate (FPR), false negative rate
(FNR), true positive rate (TPR) and true negative rate (TNR).



TABLE I: Subject Data Summary

Type Total
# Male Female Avg. Age

(years)
Std. Age
(years)

Normative 12 5 7 46.5 24.4
Non-Normative 24 16 8 64.4 18.7

In our case, TPR refers to the fraction of the cases in which
an unseen ECG and ABP snippet belonging to a particular
patient X is identified as such. Similarly, TNR refers to the
fraction of the cases where an unseen ECG and ABP snippet
belonging to other patients, is identified as such. FPR refers
to the fraction of the cases in which an unseen ECG and ABP
snippet belonging to other patients is identified as belonging
to patient X. Finally, FNR refers to the fraction of the cases in
which an unseen ECG and ABP snippet belonging to patient
X is identified as belonging to other patients. We usually
combine TPR and TNR into an accuracy rate as follows
1
2 ∗ ( TPR

TPR+FPR + TNR
TNR+FNR ).

Fig. 3: Average Accuracy, FPR and FNR for Different w

Fig. 4: Average Accuracy, FPR and FNR for Different ∆

Selecting ∆ and w: To select w, we tried several window
sizes w with a fixed ∆ of 10 minutes and evaluated our
identity verification approach (i.e., cross-validated the machine
learning model). Figure 3 shows the average accuracy rate,
FPR and FNR for different window size w. We can see that
the average accuracy rates of the patient-specific models for 4
different window size w are all considerably high. We chose
window size w = 3 seconds, as it provided us with the best
performance and responsiveness for our identity verification
system. Once the value of w was set to 3 seconds, we
tried several ∆ sizes and evaluated our identity verification
approach. Figure 4 shows the average accuracy rate, FPR

and FNR for different values of ∆. Similarly, we can see
that the accuracy rate for 4 different training time ∆ are all
considerably high with only a small deviation. Further, the
more data we have the better models we were able to create
overall. Therefore, we set ∆ = 20 minutes as the training time
for our model. Even though our training time is quite large,
it needs to be noted that it is a one-time cost. The fact that
we have a window size of just 3 seconds means that once the
identity verification system is deployed, we can quickly verify
the patient’s identity. Further, if time is of essence, we can
reduce the size of ∆ without losing much in accuracy.

VI. SECURITY ANALYSIS

In previous section, we selected the parameter for the
identity verification approach and build the patient-specific
model at the enrollment phase. In this section, we address
the viability of our approach with respect to two cases: (1)
correctly identify a patient, and (2) correctly reject a patient.
Before delving into details, we introduce two key notations
used in this section. We define Tlearn as a time interval for
which we collected ECG and ABP data from a patient to build
their patient-specific models. The duration of Tlearn is same
as the training time ∆, i.e., 20 minutes. Tcurr is the current
time interval when we are testing our identification model. It
is to be noted, that the signals in the Tcurr time-interval are
new and have never been seen by the patient specific-model
in enrollment phase.

We first tested our identity verification approach to see
if it can correctly identify a particular patient. For each of
our subject-specific model, we have exactly one acceptable
patient. Therefore, we divided his Tcurr = 15 minutes of
synchronously measured ECG and ABP signals into 300, 3-
second intervals (windows), each of which produced an image.
These images were then input into the patient-specific model,
which then labeled as positive or negative. Ideally, we should
get all positive labels for the images and accept them all, as
they are all from the particular patient.

We then tested our model to see if it can correctly reject
ECG and ABP snippets from patients other than the one whose
model we are evaluating. Therefore, for each trained model,
we obtained Tcurr = 15 minutes of synchronously measured
ECG and ABP signals from every other patient in our dataset.
We randomly select 37, 3-second intervals from every other
subject in our dataset (we have a total of 35 such subjects),
each of which produced an image. These 35×37 images were
then input into the patient-specific model, which then labeled
as positive or negative. Ideally, we should get all negative
labels.

Overall with a ∆ set to 20 minutes and w of 3 seconds, our
approach produced an average accuracy of 97.36%, with FPR
of 4.49% and FNR of 0.80%. Table II shows how our approach
fares in comparison to other approaches that uses both norma-
tive and non-normative signals to evaluate their identification
approach. We can see that we perform considerably better
than these previous efforts. Table III compares our current
approach with our previous works [10] that relied on locating
characteristic features for identification. We can see that our
current approach has a relatively higher identification accuracy
for the normative case and a similar identification accuracy
for non-normative cases. Most importantly, this performance



TABLE II: Performance Comparison
Approach Accuracy FPR Enrollment Time identification Time

Singh et. al [24] 82% 7% 1/2 record 1/2 record
Arteaga-Falconi et al. [23] 84.93% 1.29% 30 seconds 4 seconds
Our current approach 97.36% 4.49% 20 minutes 3 seconds

TABLE III: Comparison with Our Previous Work
Subject Group Accuracy FPR FNR Peak Detection Algorithm

Our
Previous Work[10]

Normative 98.96% 0.98% 1.09% RequiredNon-Normative 96.66% 1.31% 5.37%
Current

Approach
Normative 99.66% 0.61% 0.08% Not RequiredNon-Normative 96.21% 6.43% 1.16%

is achieved without requiring any characteristic feature (peaks)
detection. On the other hand, our previous work [10] relies on
the presence of peak detection algorithms or annotation files
for locating the characteristics features. In the absence of such
annotations or peak detection algorithms, the performance of
our previous approach will definitely collapse.

VII. CONCLUSIONS

Patient identification is crucial in providing proper care
in hospitals or other care-facilities. Existing identification
solutions are not always sufficient and patient identification
errors are common. In this paper we present a patient identity
verification approach that can complement existing patient
identification solutions in the event that they cannot be relied
upon. Our approach, based on ECG and ABP fusion, achieves
over 97% accurate in identifying the user on whom the system
is deployed with just 3 seconds. In the future we plan to
work on several issues to improve this work. (1) we plan to
reduce the amount of time it takes to train the model which
is considerable, and (2) we plan to expand our data source to
include a larger and even more diverse patient population to
provide extensive validation of the idea in this work.
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