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Abstract—Wearable medical systems allow their users to be
monitored continuously without being tethered. They are very
useful for tracking patient health deterioration in hospital ER and
in patient general wards. It is therefore essential to identify who
the data is being collected from. In this paper we present an au-
thentication approach that fuses characteristics of electrocardio-
gram (ECG) with arterial blood pressure (ABP) to authenticate
users. The idea behind the use of multiple physiological signals
is that it allows us to ensure that the authentication approach
works effectively irrespective of the current state of the user’s
health. This is an important requirement given that wearable
medical systems might be worn by user who have ailments that
causes their physiological signals used in authentication to be
“non-standard”. An evaluation of our approach showed that it
was over 97% accurate with a false positive rate (e.g., accepting
illegitimate users) of 1.2% in identifying the user on whom the
system is deployed. Further, it enabled authentication after just
3 seconds of signal measurement.

I. INTRODUCTION

Recent years have seen a dramatic increase in the number
of wearable medical systems that move beyond the current
paradigm of movement monitoring [1] to medical monitoring
and even actuation e.g., [2], [3]. These medical systems allow
caregivers to manage the user’s health conditions through
timely treatment and therapies (though actuation) based on
continuous monitoring of the patient’s health state.

Wearable medical systems help in monitoring patients in
an ambulatory fashion. They can be very helpful in hospital
emergency rooms (and even in inpatient general care), where
patients can often go hours without being monitored. In such
medical scenarios, if the patient’s health is deteriorating, it is
often not caught in time leading to longer hospital stays and
even increased mortality [4]. Wearable medical systems that
can monitor vital signs continuously can aid in the amelio-
rating this process. In fact several such vital signs monitors
are available that can measure a variety of signs including
electrocardiogram (ECG), continuous blood pressure, heart-
rate, body temperature, SPO2 in a non-invasive fashion [5],
[4]. Given the cost of these wearable medical systems, the
devices are often shared between multiple patients over time.
It is therefore crucial that the data from the “wrong” user is not
used to determine treatment and therapies for a particular user.
Protecting against these situations requires that we verify the
deployment of wearable system on a particular user. Given

the hospital emergency rooms are already very busy, the
authentication process cannot be manual.

Physiological signals such as electrocardiogram (ECG) are
often used to authenticate users in a wearable context as
they are (1) difficult to spoof, (2) use vital signs that are
already being continuously collected, and (3) do not require
traditional input modalities unlike authentication solutions
based behavioral cues (e.g., voice, touch or gestures), input
entry (e.g., passwords), or biometrics (e.g., fingerprinting, iris
scan). However, traditionally, authentications solutions (physi-
ological signal-based and others) were largely designed for and
validated on a generally healthy user population. It is not clear
how well these solutions perform when the user population
has ailments that cause their physiological signals used in
authentication to be “non-standard”. However, in a wearable
medical system context this assumption of user healthiness
may not be always true and we need solutions that work
for normal patients and those patients with ailment. This is a
non-trivial problem because ailments can drastically affect the
temporal and morphological characteristics of physiological
signals being used for authentication.

Consequently, in this work, our approach fuses character-
istics of two vital signs often measured in tandem, namely
electrocardiogram (ECG) and arterial blood pressure (ABP),
to authenticate users in a user health-context independent
manner. The reason that traditional ECG based authentication
solutions does not work well for ailing users is because the
solutions depend on the ECG having defined shapes and timing
properties. This assumption does not always hold for users
ailing with specific health conditions. By considering multiple
physiological signals, we aim to capture the nuances of the
cardiac process of a user from diverse perspectives despite
the non standard nature of one of the signal. Our main idea
is to build a machine learning model of the physiological
relationship between synchronously measured ECG and ABP
from a user and use it as a template. Any time we need to
authenticate the fact that the claimed wearer of the wearable
system is a particular user, we take a sample of the ECG
and ABP from the user and compare its characteristics with
that of our model to see if they match. We have evaluated
our approach based on a dataset of 36 (healthy and ailing)
users from the MIT PhysioBank Fantasia and MGH databases
[6] to determine its feasibility. We found our approach to be
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Fig. 1: ECG and ABP signal and their Relationship

over 97% accurate with a false positive rate (e.g., accepting
illegitimate users) of 1.2% in identifying the user on whom
the system is deployed. Further, it enabled authentication after
just 3 seconds of signal measurement. The contributions of
this work are two-fold: (1) the uses combined ECG and ABP
signals for authenticating users of wearable medical systems,
(2) the demonstration of the feasibility of the approach in a
user health-context independent manner for both healthy and
ailing users.

Related Work: Over the past few years several efforts
have been directed toward user authentication in wearable
contexts using physiological signals such as electrocardiogram
(ECG) [7], [8], [9], [10], [11], PPG [12], vocal resonance
[13], bioimpedence [14], heart-rate [15], and EEG [16]. Most
of these efforts have focused on creating a template for a
user based on characteristics points in the signal waveforms
followed by statistical or machine learning approaches for
authenticating the user. Some work has also been done on
using fusion of several physiological signals as a way to
authenticate users. These have been done to improve the
accuracy of authentication process as [17] where ECG with
electroencephalogram (EEG) signals were combined or for
improving the ECG based authentication particularly in the
presence of artifacts such as movements [18], [19]. None of
these solutions have been shown to work for both normal as
well as users with ailments affecting the physiological signal
being used for authentication. In recent years, there have been
some efforts to consider a diversity of user population when
using physiological signal authentication [20], [21]. However,
these approach produce relatively low accuracy and high false
negative rates (i.e., rejects legitimate users).

II. SYSTEM MODEL AND PROBLEM STATEMENT

System Model: A wearable medical system consists of set
of sensor devices (and actuator devices). Sensors monitor the
patient’s physiological state and send their measured data to
a cloud (a sink for data storage and processing), via a base
station like a smartphone. The cloud provides an interface
for the patient/caregiver to analyze and visualize the data.
Caregivers can then determine appropriate treatment for the
user and inform the user, who may then use their actuators
to enable the specific therapies. Every time a sensor sends its
measurement to the cloud, it identifies the user on whom it is
deployed.

The problem we are addressing in this work is to use the
fusion of ECG and ABP signal features for authentication in a
user-health context independent manner. In this regard, we like
to satisfy two primary design goals: (1) it should be accurate

with low false positive and false negatives, (2) it should be
responsive and quick to identify the user on whom the system
is deployed.

III. BACKGROUND

In this section, we provide some background information
on the principal signals that we consider for this work, i.e.,
electrocardiogram (ECG), arterial blood pressure (ABP) sig-
nals. ECG is the measurement of the electrical representation
of the cardiac process of a person. As shown in Figure la,
and ECG signal is made up of peaks and trough combinations
which is made up of five elements named P, Q, R, S and T
waves. The P wave is observed during atrial depolarization
(which causes the blood to be pushed to the ventricles), the
QRS complex is observed during the rapid depolarization of
the right and left ventricles (which causes the blood to be
pushed out of the ventricles and into the lungs and the rest
of the body), and the T wave is the depolarization of the
ventricles. The time difference between two R peaks is known
as an RR-interval. The RR-interval refers to the beat-to-beat
variations in heart rate and is a measure of heart rate. Atrial
blood pressure (ABP), on the other hand, is the continuous
measurement of blood pressure and can be measured non-
invasively [22] much like ECG. As shown in Figure 1b, a
typical atrial blood pressure contains the trough which is
diastolic blood pressure and the peak which is systolic blood
pressure. Diastolic troughs occur near the beginning of the
cardiac cycle and systolic peaks occur when the ventricles
contract. As ECG and ABP signals are both measures of the
cardiac process and both controlled by our autonomic nervous
system and they track each other. For example, an R peak in
the ECG signal will typically be followed by a systolic peak
in the ABP signal as both represent the compression of the
ventricles that results in the blood being circulated through
the entire body via the Aorta (see Figure 1). Similarly, the
pathologies in the cardiac process that results in abnormal
ECG waveform is also reflected in the ABP signal [23].

IV. APPROACH

In this section, we introduce our combined Electrocardio-
gram (ECQG) and arterial blood pressure (ABP) based au-
thentication approach. The approach leverages the fact that
the inter-relationship between the synchronously measured
ECG and ABP signals from different users has different
characteristics. Fig 2 shows our system setup. It works in
two stages: enrollment stage and authentication stage. In the
enrollment stage, we collect ECG and ABP data from a user
we are trying to authenticate, extract specific features from it
and build a user-specific model. This model forms a “template”



that describes the user’s unique physiological behavior. During
the authentication stage, we collect a short snippets of current
ECG and ABP signals from a unknown user who is trying
to authenticate themselves, extract the same features from the
snippets and feed them to the user-specific model, which then
labels this new features as belonging to the user or not (see
Figure 2). We describe the two steps in details below.
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Fig. 2: The ECG and ABP based Authentication Approach

A. Enrollment Stage

The goal of enrollment phase is to build a model for a
particular user that captures the characteristics of the ECG
and ABP signals measured from them in tandem. We use
a supervised-learning-based approach to construct (train) the
user-specific model. We use a extremely randomized trees [24]
as the machine learning classifier in our model. Extremely
randomized trees is an ensemble classifier method that extends
conventional decision trees by introducing randomness during
the construction process [24].

The feature vectors we used during our enrollment stage
were 11-dimensional values extracted from A time-units of
synchronously measured ECG and ABP signals. Before the
feature extraction step, we preprocess both ECG and ABP
signals by applying a 3rd order Butterworth bandpass filter
with a cutoff frequency at 1-50 Hz thus eliminating the
low- (baseline wandering) and high- (muscle contractions)
interferences. We then segment both signals into several w-
sized windows (where w < A) such that at least one RR-
interval are presented within our moving window. Our ex-
tremely randomized trees-based training required as input two
classes of feature vectors referred to as positive and negative
class points. Each w window therefore generates a positive
or negative class feature point for the model. The positive
class points capture the situations where the ECG and ABP
measurements originate from the user whose model is being
trained, while the negative class points capture the situations
where the ECG and ABP measurements originate from other
users.

For each w-sized window of ECG and ABP segments we
extracted the following 11 features. (1) The ratio between
average RR-intervals and SS-intervals;.(2) The difference be-
tween average RR-intervals and SS-intervals. (3) The differ-
ence between the standard deviation of RR-intervals and SS-

intervals. (4) The ratio between average R peak amplitude
and Systolic peak amplitude. (5) The ratio between average
R peak amplitude and Diastolic peak amplitude; (6) Average
Pulse Transmit Time (PTT). We define PTT as the distance
between R peak and the systolic peak that follows it. (7)
Standard deviation of PTT. (8) Root Mean Square (RMS) of
PTT. (9) Average backward PTT. We define backward PTT
as the distance between R peak and the systolic peak occurs
ahead of that R peak. (10) Standard deviation of backward
PTT. (11) RMS of backward PTT.

B. Authentication Stage

In the authentication stage, the trained user-specific model
will decide whether to authenticate a user or not based on
newly received snippet of the ECG and ABP measurements.
In this regard, we collect w time-unit of newly measured
ECG and ABP signals from the user, and then extract the 11-
dimensional feature from it. Then we feed this feature point
into the user-specific model. The model will then output a
positive or negative label for this feature point. If the feature
point is labeled as positive, then the user is considered as a
legitimate user and will be authenticated.

V. PARAMETER SELECTION

In this section, we illustrate how we select the two most
important parameters of our authentication system: (1) A, the
amount of the data needed to train the model (i.e., training
time), and (2) w, the amount of data needed to be able to make
an authentication decision. We begin with an introduction of
the dataset we used, followed by performance metrics used to
choose the two parameters. Finally, we discuss the parameter
selection process itself.

Dataset: In this work, we collected data belonging to 36
subjects (i.e., users) from the MIT PhysioBank Fantasia and
MGH/MF databases [6]. We chose these particular subjects
from these databases because the availability of both ECG
and ABP signals for them. Furthermore, the Fantasia database
is made up of healthy subjects, while the MGH/MF database
mainly contains data from subjects with specific cardiac con-
ditions (such as sinus tachycardia, atrial fibrillation and etc. ).
Table I shows the statistics on the patient population we used
to train and test our ECG plus ABP authentication system. We
categorized the patients in the dataset into two types based
on their ECG signals: (1) Normal subject type, which only
includes subjects who did not suffer from any ailments and
had a normal sinus rhythm ECG; (2) Ailing subject type, which
only includes subjects who are suffering from the cardiac
diseases. For each of the 36 subjects we had on average about
40 minutes of usable ECG and ABP data for our experiments.

TABLE I: Subject Data Summary

Total Avg. Age | Std. Age
Type Male | Female
# (years) (years)
Normal | 12 5 46.5 24.4
Ailing | 24 8 64.4 18.7

Metrics: In this work, we have formulated the problem of
authentication as an instance of a binary classification task.
To evaluate the classification performance, the performance



metrics are based on the notion of the false positive rate
(FPR), false negative rate (FNR), true positive rate (TPR) and
true negative rate (TNR). In our case, true positive rate (true
negative rate) refers to the fraction of the cases in which a
legitimate (illegitimate) user is correctly accepted (rejected),
respectively. Similarly, false positive rate (false negative rate)
refers to the fraction of the cases in which an illegitimate
(legitimate) user is incorrectly accepted (rejected) as a legit-
imate (illegitimate) user. Furthermore, we also calculate the
equal error rate (EER) to evaluate the performance of the
classification by varying a discrimination threshold. EER is
the rate at which both FPR and FNR are equal.

Selecting A and w: To select w, we tried several win-
dow sizes w for a fixed A of 10 minutes and evaluated
our authentication approach (i.e., cross-validated the machine
learning model). Figure 3 shows the average accuracy rate,
FPR, FNR and EER for different window size w. We can
see that the average accuracy rates of the user-specific models
for 4 different window size w are all considerably high. In
terms of the EER, we can see that 3 seconds window size
outperforms the other cases with the lowest average EER at
3.00%. We therefore chose window size w = 3 seconds, as
it provided us with the best performance and responsiveness
for our authentication system. Once the value of w was set
to 3 seconds, we tried several A sizes and evaluated our
authentication approach. Figure 4 shows the average accuracy
rate, FPR, FNR and EER for different values of A. Similarly,
we can see that the accuracy rate for 4 different training time A
are all considerably high with only a small deviation. Further,
the more data we have the better models we were able to create
overall. Therefore, we set A = 20 minutes as the training
time for our model. Even though our training time is quite
large, it needs to be noted that it is a one-time cost. The fact
that we have a window size of just 3 seconds means that
once the authentication system is deployed, we can quickly
authenticate users. Further, if time is of essence, we can reduce
the size of A without losing much in accuracy (up to a point).
Reducing the overall training time to a much smaller value is
an important future work for us.
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VI. SECURITY ANALYSIS

In previous section, we selected the parameter for the
authentication system and build the user-specific model at the
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enrollment phase. In this section, we address the viability
of our authentication system with respect to two cases: (1)
accepting a legitimate user, and (2) rejecting an illegitimate
user. Before we delve into the details, we introduce two key
notations used in this section. We define Tj.q,n as a time
interval for which we collected ECG and ABP data from a
user to build their user-specific models. The duration of Tjcq.p,
is same as the training time A, i.e., 20 minutes. Ty, is the
current time interval when we are testing our authentication
model. It is to be noted, that the signals in the Ty, time-
interval are new and have never been seen by the patient
specific-model in enrollment phase.

We first tested our authentication model to see if it can
correctly authenticate a legitimate user after his user-specific
model is trained. For each trained model, we have exactly one
legitimate user. Therefore, we divided his T, = 15 minutes
of synchronously measured ECG and ABP signals into 300,
3-second intervals (windows), each of which produced an 11-
dimensional feature point. These 300 feature points were then
input into the user-specific model, which then labeled them as
positive or negative. Ideally, we should get all positive labels
for the points and authenticate them all, as they are all from
the legitimate user.

Then, we tested our authentication model to see if it can
correctly reject the illegitimate user who tries to access into
the system. Therefore, for each trained model, we obtained
Tewrr = 15 minutes of synchronously measured ECG and
ABP signals from every other user in our dataset. The two
resulting signal time series were then divided into 300 x 35
(since for each user-specific model, we have 35 illegitimate
users), 3-second intervals (windows), each of which produced
an 11-dimensional feature point. These 10500 feature points
were then input into the user-specific model, which then
labeled as positive or negative. Ideally, we should get all
negative labels for the points and reject them all, as they are
all from illegitimate users.

Overall with a A set to 20 minutes and w of 3 seconds,
our approach produced an accuracy of 97.43%, with an EER
of 2.39%, with FPR of 1.2% and FNR of 3.94%. The Table
I shows how our approach fares in comparison to other
approaches that utilize ECG signals from healthy and ailing
patients for authentication. It can be seen that overall we
perform much better in terms of accuracy and false positives.
Our authentication speed, once the model is deployed, is
fastest (only 3 seconds). However, we pay the penalty in terms



TABLE II: Performance Comparison

Approach Accuracy | False Positives | Enrollment Time | Authentication Time
Singh et. al [21] 82% 7% 1/2 record 1/2 record
Arteaga-Falconi et al. [20] 84.93% 1.29% 30 seconds 4 seconds
| Our approach | 97.43% | 1.2% 20 minutes 3 seconds
of enrollment time, which plan to improve in the future. [3] “Pancreum: The Wearable Artificial Pancreas Company,”

So far, the authentication decision of our model is based
on a single feature point (one-time authentication). As the
physiological sensors like ECG and ABP sensors are moni-
toring the user continuously, our system has the instinct to
be expanded to the continuous authentication system. The
decision of our continuous authentication system is based
on the number of w-sized windows n (each produces one
feature point) and majority voting, i.e., if the majority labeled
feature points are positive in n windows, then the user will
be authenticated, otherwise the user will be rejected. Fig 5
shows the average FPR and FNR for the above two cases
using different numbers of windows. The baseline is one
window (i.e., one-time authentication), others are continuous
authentication with different numbers of windows. We can
see that comparing to the one time authentication, continuous
authentication has the lower FPR and FNR.
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Fig. 5: Average FP and FN for Security Analysis using
Different Numbers of Windows

VII. CONCLUSIONS

In this paper we presented an approach that combined
electrocardiogram (ECG) with arterial blood pressure (ABP),
to authenticate users. The use of multiple physiological signals
allowed us to ensure that the authentication approach works
effectively irrespective of the current state of the user’s health.
Our approach showed that it was over 97% accurate in
identifying the user on whom the system is deployed with
just 3 seconds of signal measurement. In the future we plan
to work on several issues to improve this work. (1) we plan to
reduce the amount of time it takes to train the model which is
considerable, (2) we plan to evaluate our approach using data
collected from actual ECG and ABP sensors, which might be
considerably noisier that the data in our dataset, and (3) we
plan to expand our data source to include a larger and even
more diverse user population to provide extensive validation
of the idea in this work.
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