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Abstract—Continuous health monitoring system (CHMS) are a
collection of networked sensing devices that continuously monitor
a user who is carrying them. The sensors can be worn by the
user (e.g., fitbit or jawbone) or be part of a device that user
carries (e.g., smartphones). Trustworthy operation is essential
for CHMS due to the sensitive nature of the information they
collect and the wireless transmission of the data to a sink/base-
station entity for transport to a medical cloud for long term
storage in a patient health record (PHR). In this regard, in
the past we have proposed a scheme known as Physiological
signal-based Key Agreement (PKA) to enable plug-n-play (i.e.,
transparent to the user in terms of configuration or setup)
information security between wearable sensors that had access
to same physiological signals (e.g., ECG, PPG). In this paper,
we present Physiology-based System-wide Information Security
(PySIS), which uses the concept of generative models (which
generate synthetic physiological signals for a user) to extend
PKA to enable end-to-end information security in CHMS from
the sensors to the PHR. The crucial difference is that now we
do not need to have access to the same physiological signals at
both ends for our protocol to work. In addition, if PySIS fails
and data leakage occurs in the system, we also propose a logging
mechanism to perform forensic analysis of the system.

I. Introduction

Smartphone-based health monitoring and the emerging field
of wearable systems have demonstrated great potential in a
broad range of applications in healthcare and wellbeing. These
systems utilize an array of lightweight sensing devices that
collect and wirelessly transmit data to a sink/base-station entity
for eventual transport to a medical cloud for long term storage
in a patient health records (PHR). Examples of applications
of continuous health monitoring systems (CHMS) include
physical activity monitoring, emergency response, and reha-
bilitation. These systems intend to improve health outcomes,
decrease isolation, reduce health disparities, and substantially
reduce costs have the potential to produce annual cost savings
of up to 81billion to the healthcare expenditure [1].

In this paper, we consider that trustworthy operation of
CHMS includes two aspects: a) data security in CHMS, which
ensures that there is no data leakage leading to effects such
as privacy violation or other malicious actions, and b) even
if there is data leakage the CHMS can always detect such an
event and take actions.

Recent years have brought increased attention to informa-
tion security vulnerabilities in medical devices and sensing
elements [2]–[4] that manifest due to lack of secure commu-
nication between the devices and entities that manage them
(i.e., data sinks/programmers). Lack of security in CHMS not
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only harms patient privacy, but may also physically harm the
user (i.e., the host). Adversaries can introduce bogus data,
modify/suppress legitimate health data — inducing erroneous
evaluation of a person’s health, untimely administration of
treatment, or denial of service (DoS) — on an unsecured
CHMS. The issues of security for CHMS can be addressed
from many perspectives, for instance, much work needs to
be done to improve the quality of software being run on
these devices and the way regulators ensure that the system is
secure [5]. However, in our efforts we are focused on ensuring
information security, that is, the data the CHMS generate and
communicate are accurate and not tampered with. This has
two elements:

• Data Collection Security: This is essentially about se-
curing the CHMS data collection infrastructure. Ensuring
data collection safety therefore requires ensuring that
the medical data is not tampered with or observed by
authorized entities as it transits from the sensors (that
generate them) all the way to the PHR. Traditional
solutions for data collection security have considerable
initialization and management costs, especially those re-
lated to the deployment of cryptographic primitives (e.g.,
key distribution, rekeying, and tamper-resistance). These
approaches assume a large degree of control in terms
of deployment [6]. Hence, they require a hospital or
home environment for implementation. As the general
acceptance of CHMS and the number of constituent de-
vices increase, maintaining the same level of deployment
control may not be feasible. Consequently, in order to
minimize the cognitive load on the users – both CHMS
hosts and caregivers – the CHMS have to be considerably
easy to use. This is especially true for security solutions,
which if cumbersome can simply be ignored.

• Data Reconciliation Security: Given the ever increas-
ing number of monitoring devices on a patient from
specifically designed wearable devices of a BAN to a
smartphone based sensor data, the number of personal
health records (PHRs) maintained for a user is also ever
increasing. The PHRs are typically maintained by the
monitoring system developers and are usually isolated
and independent of each other. For this data to be useful
for the user, it is important for the data to be reconciled
(aggregated) in one place. Much like apps like MINT
[7] reconcile a person’s financial data in one place. This
process of reconciliation has to be done in a manner that is
secure. This means that medical data leave the PHRs only
if an authorized party requests it and the data protected
during transit. One could imagine a system where the



PHRs use passwords for authorizing users. An aggregator
therefore establishes an SSL connection with the various
PHRs and uses a username and password over the secure
link obtaining the data. Given the diversity of apps that
collect health data from a user, the number of passwords
that the user has to remember will be much higher and
therefore tedious compared to other types of information
such as financial data.

Figure I illustrate the data collection and reconciliation
process. Our aim is to make sure the authorization and the data
exchange happens during data collection and reconciliation
in a CHMS without the user being actively involved. In
this regard, we propose a unified approach to collection and
reconciliation problem — one that takes the cyber-physical
character of CHMS enabling security. Cyber-physical security
solutions (CyPSec) has been proposed as an alternative to
traditional information security approaches (e.g., PKI and
passwords) for medical monitoring systems such as BANs [8].
CyPSec solutions use the environment of the operation of the
system, in this case the human body, to derive or facilitate the
exchange of essential security primitives (e.g., cryptographic
keys) that will enable information security within the system.
Moreover, as with any security solutions PySIS can also be
compromised given an adversary who has the required re-
sources. In case PySIS is compromised, the CHMS should also
have mechanisms to perform forensic analysis to pin point,
which sensor or, which communication step was compromised
or at the least detect an attack from an adversary.

In this paper, we present a unified CyPSec-based informa-
tion security solution called Physiology-based System-wide
Information Security (PySIS) for CHMS that secures both
the data collection and reconciling with one general approach
using (1) an authentication key agreement process based on
physiological signal features for hiding and unhiding, and
(2) physiological generative models which produce synthetic
clinically-relevant physiological signals based on an analytical
model trained using physiological signal statistics collected
from the user. The main idea is to use features derived from
the user’s actual physiological signals to hide a cryptographic
key and use features derived from synthetic physiological
signals using appropriately user-specific physiological genera-
tive models to unhide this key. The successful unhiding of
the key provides two advantages for the entities that have
access to the user’s physiological data or generative models, it
provides: (1) authentication based on the shared knowledge of
user’s physiological signal features, and (2) confidentiality and
data integrity through the subsequent use of the cryptographic
key exchanged. Further, the PySIS does not even require
the two communication entities to have access to the same
physiological signals or their generative models. In fact PySIS
works with both coherent and incoherent signals. Coherent
signals are generated from the same basic physiological pro-
cess, e.g., electrocardiogram (ECG) and photoplethysmogram
(PPG) obtained from the beating of the heart.While incoherent
signals are generated from different physiological processes
such as electroencephalogram obtained from the brain’s elec-
tromagnetic activity, and ECG obtained from heart beats.
Finally, PySIS make security plug-n-play, largely transparent
to the users and therefore easy to deploy and use.

For forensic analysis of the CHMS, we propose investigator-
driven approaches for forensic analysis of system failures;
whether those failures are the result of benign circumstances
or malicious attack. At the core of our approach is a tamper-
evident logging system that faithfully records system events—
even when the logger itself cannot be trusted. We also
explore the dichotomy inherent in collecting data without
knowing what information will be relevant a priori and quickly
pinpointing the source of the attack or failure. To address
this challenge, we use data provenance and semi-automated
analysis to infer and prioritize the data most relevant to the
current investigation. Our forensic logging relies, in part, on an
extension of the tamper-evident semantics developed in [9] and
others [10], [11]. While these works form a strong foundation
for the research efforts described in this proposal, they do not
address many of the key challenges of forensic analysis. In
particular, tamper-evidence is a necessary component to foren-
sic analysis, but these semantics do not help the investigator
analyze the attack itself [12].

Before we delve any further into PySIS we present some
background on how physiological features can be used for
secure key hiding/unhiding (i.e., key agreement) and how
generative models work.

II. Background

Here we present a quick summary of the two principal
components of PySIS namely, physiological-feature-based key
agreement (PKA) and physiological generative models.

A. Physiological-feature-based Key Agreement (PKA)

The variability in the human physiology can be used to
derive fresh symmetric cryptographic keys for secure commu-
nication between any wearable device with access to the same
physiological signals [6]. Entities capable of sensing the same
physiological signal can use common physiological signatures
to hide and un-hide a secret key. In this protocol, the sender
generates a random key and hides it using frequency-domain
features generated from recently measured physiological sig-
nals obtained from a person with cryptographic construct
called the fuzzy vault [6]. The vault is then transferred to
the other receiver, which then uses its own frequency-domain
features generated from measured or generated physiological
data to un-hide the random key.

The key hiding using physiological features is a lightweight
signal processing process that executes at the sender. The
sender senses physiological signals for a given time, e.g.,
30 seconds, and performs a windowed 256-point FFT on the
signal snippet. The sensor then runs a peak detection algorithm
on the FFT and derives peak indexes and peak values, which
are concatenated to form a 16-bit feature. The sender then
generates a random 128-bit key and splits it into n + 1
coefficients of a nth order polynomial. The features are then
transformed using the polynomial to form a set of ordered pairs
(x, y) of feature values and their polynomial evaluations. This
set is then obfuscated with random pairs (x′, y′) called chaff

points, such that y′ is not the polynomial evaluation of x′. The
ordered and the chaff points together form the fuzzy vault. This
vault is then sent to the receiver, which has its own set of 16-bit
features generated from concurrently measured physiological
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Fig. 1. System Model for Health Data Collection and Reconciliation

signals. As long as the receiver has more than n+1 features in
common with the sender, it can use Lagrangian interpolation to
reconstruct the polynomial and obtain the secret key from its
coefficients. As long as the number of common physiological
features between the sender and the receiver is greater than
n, where n is the order of polynomial used, the receiver will
successfully deriving the secret key from the vault. However, if
this vault is received by an attacker who does not have access
to patient data, it has to go through all possible combination of
n+1 points out of total number of points in the vault which is
combinatorial in order. For example of 9th order polynomial
and 4000-point vault, the complexity for the attacker to break
the vault is equivalent to brute-forcing a 95-bit key [6].

B. Physiological Generative Models

Generative models of a physiological signal S A is a mathe-
matical function, which takes personalized temporal and mor-
phological parameters as input and output synthetic physiolog-
ical signal S̃ A [13], [14]. The temporal parameters ( fA), e.g.,
heart rate and the standard deviation of the heart rate, change
frequently over time. Despite the considerable dynamics of the
human body, an important characteristic of human physiology
is the periodicity of the waveform of its various physiological
signals. The waveform shape within a period is called the
morphology of the signal and is expressed by the morphology
parameters (mA). A generative model is therefore a function
GA(mA, fA, t), that when supplied with the correct morphology
and temporal parameters generates a diagnostically equivalent
synthetic signal S̃ A for time t. It has been observed that for
ECG and PPG signals the morphology parameters change
very slowly over the lifetime of a person and hence is a
physiological signature [13]. To use a generative model for
synthesizing physiological signals the morphology parameters
have to be learned from a sample of the actual physiologi-
cal signal. The temporal properties too have to be obtained
from the actual physiological signals, but obviously in real
time. Finally, though generative models produce diagnostically
equivalent signals, the synthesized and actual physiological
signals may not match sample for sample. They only match in
certain features deemed useful for diagnosis of critical health
problems as suggested by a physician.

III. The PySIS principle
The principle behind PySIS is to execute PKA thus enabling

authenticated key agreement but replace the raw physiological
signals on one end with the diagnostically-equivalent syn-
thetic signals obtained from a trained physiological gener-
ative model. Let us consider that the entity A has access
to physiological signal S A and entity B has access to the
generative model GA, and the morphological parameters mA
of the signal S A. Let us also consider that the entity A was
already authenticated to entity B and was sending the most
current version of S A using a secret ki. The entity A now wants
to execute PySIS to renew the key ki to ki+1. The entity A can
generate the new key ki+1 and hide it using the vault created
by features extracted through the PKA process. The entity B
extracts the most recent temporal features fA from signal S A
and uses the model GA(mA, fA, t) to generate synthetic signal
S̃ A. It can then extract PKA features from the synthetic signal
and unlock the vault to get the new key ki+1. Our previous
work PEES explore this idea in more detail [15]. In this
scenario the usage of generative model may seem unnecessary.
However, we will see in subsequent sections how we can
secure two entities that have access to different types of signal
using the same idea. Finally, we will extend this technique
to consider automated authenticated reconciliation of PHRs
associated with a given person in a transparent manner.

IV. System and ThreatModel
At the core of the system is a set of wireless sensors that

are either part of a device worn by the user of carried as
part of their smartphone. Examples include glucose meters,
electrocardiogram (ECG) or photoplethysmogram (PPG), or
environmental such as temperature and humidity monitors.
Actuating devices such as infusion pumps, can also be used
in CHMS however we do not consider them explicitly for
this work to keep the discussion simple. PySIS can be easily
extended to actuators. The sensors sense physiological as well
as environmental signals at a given sampling rate. The goal
of the system is to collect data from the sensors and forward
them to a medical cloud for storage and caregiver retrieval. The
cloud essentially maintains a personal health record (PHR) for
the user where the data is archived. The transfer of sensor data
to the PHR is done usually via a local sink entity called the



base station. The base station can be implemented on a variety
of devices from generic smartphones to proprietary dongles
such as [16] [17].

The data stored in the PHRs may need to be reconciled by
the user as needed and we assume the user utilizes an aggre-
gator application for this purpose. The aggregator is assumed
to know the location of the various PHRs. Its principal task
is to connect over a network with each of the PHR, present
the user’s credentials and then obtain data. The health data is
then available at the aggregator for further analysis as well
as access without connecting to the PHR again. We further
assume the aggregator and the various PHRs use a common
language to communicate with each other such as HL-7 CDA
[18] in order to exchange data.
Threat Model: Given the sensitive nature of the data collected
by CHMS in their respective PHRs which later need to be
accessed, one needs to ensure that the data being exchanged
thus is protected from unauthorized access and tampering.
In this regard, securing a CHMS requires preventing the
adversaries from: (1) joining the network as a legitimate device
and introducing bogus health data, (2) accessing confidential
health data collected or exchanged while the data goes from
the sensors to the PHR and then reconciled from the PHR by
the aggregator, and (3) preventing any legitimate health data
from being reported or modified during the transit.

V. Physiology-based System-wide Information Security

Let S A and S B be the signal features obtained at entities A
and B that are trying to use PySIS, then we have two cases to
consider: (a) S A and S B are coherent that is generated from
the same underlying physiological process of the body e.g.,
electrocardiogram and photoplethysmogram that is related to
the cardiac process, and (b) S A and S B are non-coherent i.e.
generated from totally different physiological process of the
body e.g., electrocardiogram from heart and electroencephalo-
gram from brain.

A. PySIS for Data Collection

Data collection requires data to be transferred from the
sensor to the PHR via a base station. This means one needs to
secure (establish secure communication channel between them
through authenticated symmetric key agreement) the various
links that exists on this path. Using PySIS, the approach is the
same for any pair of entities in the path. We therefore keep our
discussion general between two entities A and B on the path.
Let us consider that an entity A has access to the generative
model of a physiological signal S A. This means that the entity
A has both the morphological parameters mA and the current
temporal parameters fA of the generative model GA( fA,mA, t)
of the signal S A. A may or may not have the physiological time
series signal S A, however, it has the capability of regenerating
a synthetic signal S̃ A with the generative model GA which is
diagnostically equivalent to the time series S A. Let us consider
that we need entity A to have an authenticated and secure
communication channel with another entity B sensing signal
S B having a generative model GB( fB,mB, t) of signal S B.
Using Coherent Signals: We hypothesize that if two signals
are coherent then there will be a considerable amount of
correlation among their temporal parameters. This hypothesis
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Fig. 2. Temporal parameters derived from ECG and PPG. Results from 24
subjects show high correlation between heart rates derived from ECG and PPG
and low error in mean heart rate, standard deviation, and lfhf ratio estimation.

has been supported by our previous work where we considered
the ECG and the PPG signal and measured the heart rate
variability from the two [13], [14]. Although the morphology
of the two signals are very different, the temporal properties
such as average heart rate, standard deviation etc. reveals very
close match among the two signals1. Moreover, using the
results of our previous work [15], we hypothesize that the
synthetic signal obtained from generative model of a signal,
ECG or PPG, has common physiological signature with the
original time series of the signals, ECG or PPG respectively.

Let the signals S A and S B has common temporal parameters
fAB as they are coherent. Further let GA and mA be the
generative model and morphological properties for signal S A
that entity B possess in a pre-deployed fashion.

1) A generates a secret session key k, uses PKA to hide it
using frequency-domain features (note these are different
from fAB) derived from S A and send its over to B.

2) B computes fAB from its sensed signal S B.
3) B then uses mA and the time domain parameters, fAB

obtained from S B to generate the synthetic signal S̃ A from
its generative model GA( fAB,mA).

4) B then derived frequency-domain features from S̃ A and
executes PKA to unhide the key k.

An obvious issue one can raise here is that the entity B needs
to posses both the generative model and the morphological
parameters of signal S A. If we need to pre-deploy them,
why not pre-deploy actual cryptographic keys. This is true
to some extent. However, with PySIS approach we need to
redeploy GA and mA only once. Any subsequent rekeying will
happen automatically. Further, the approach is secure even
if the current session key is compromised as a new session
key, completely unrelated to the one compromised, can be
generated within the system secure. This however cannot be
said for key pre-deployment based approaches.
Validation: To validate PySIS for coherent signals we con-
sidered 24 subjects form the MIT database [19] that has both
ECG and PPG data measured simultaneously. The sampling
frequency of ECG was 125 Hz while that of PPG is 60 Hz.

1In fact there is some morphological equivalence among the two signals as
well, since the position of the R beat of the ECG coincides with the peak of
the PPG signal.



We employed a peak detection algorithm to detect R peaks
from both the ECG and PPG signals. Figure 2 shows a sample
plot of the peaks from both the signals of one subject. There
is a very near match in the position of the R peaks. This
entails that the temporal properties of may be similar for
both the signals. In fact on further analysis we found that
the correlation of the heart rate from both the signals is on an
average > 0.9 indicating that both the signals have very similar
heart rate variability. The difference in heart rate estimation
from both the signals was less than 1 beat and the difference
in standard deviation estimation was less than 0.8. The fact
that the temporal properties are so similar allows us to execute
PKA with considerable success.
Using Non-coherent Signals: For non-coherent signals we
rely on the hypothesis that coupling provided by the human
body between different physiological processes ensures that
some signature of signal S A is visible on a signal S B even if S A
and S B are not produced from the same physiological process.
With non-coherent signals the execution of PySIS is identical
to the coherent case, excel the fAB is now derived from a
signal S B that is not coherent with S A. Experimentation with
MIT BIH data [19] shows that there is considerable coupling
between ECG signal from the heart with the EEG signal of
the brain of an individual. The R peaks from the ECG signal
can be obtained from the EEG signal of an individual using
complex physiological signal processing algorithms. The time
domain parameters of the generative model of the ECG can
be derived from these R peaks and can be used in conjunction
with the morphology parameters of the ECG to execute PySIS
between an EEG sensor and an ECG sensor.

Our approach to extract ECG from EEG signal uses Contin-
uous Wavelet Transform (CWT) [20]. CWT gives information
about the available frequencies in the signal at a particular
time. CWT uses a basic signal function which is scaled
according to the frequency and time shift allowing specific
shape properties of the signal to be analyzed. CWT for x(t)
signal is expressed as:

x(t) =
1
√

a

∫ ∞

−∞

x(t)ψ∗
(

t − b
a

)
dt, (1)

where, a > 0 is a scaling parameter, b is a shift parameter
and ψ is a wavelet function. The scale parameter a, is used
to denote how much the wavelet is stretched or compressed.
Smaller the value of a, more the compressed wavelet. The
shape of wavelet becomes stretched with increase in value of a.
For each R-peak in ECG there is a corresponding disturbance
in the wavelet transform of EEG signals as shown in Figure
3. The scale 4 [21] parameters from the wavelet transform
of the EEG signal exhibit this disturbance with the maximum
magnitude.
Validation: With accurate signal processing technique we can
extract the time values at which these disturbances occur and
hence get the positions of the R peaks in the ECG signals.
These temporal parameters can then be used by a generative
model to generate a synthetic ECG signal for PKA execution.
Simulation results on 10 different patients show a PKA success
rate of 20%. Although the success rate is very small, we
believe that a more comprehensive signal processing algorithm
can ensure better success rate. This is part of our current efforts
in this direction.
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Fig. 3. R peaks from ECG data and wavelet transform of EEG.

B. PySIS for PHR Reconciliation

In this era of wearables and smartphones a user has a
plethora of non-clinical PHRs recording important information
on behavior and physiology that can be useful in managing
health risks. Data from the set of PHRs for a given user
is very valuable and can be used in two ways: (a) the data
can be processed to provide behavioral feedback to the user
through smartphone application; and (b) care providers can
be granted access to this data as needed during both normal
office-visits and during emergencies. Hence reconciliation of
these disparate sources of information is an important problem.
Traditional techniques for reconciliation of disparate health
data are largely manual and requires remembering multiple
of username and passwords, at least one for each PHR. This
imposes enormous cognitive load on the user given the large
number of PHRs that the inevitable ubiquity of sensors and
smartphones is bound to create. With an aging population the
time when PHR reconciliation is the most useful is the precise
time when the user maybe least capable of achieving it, leading
to treatment errors and unwanted hospitalization.

PySIS can help in alleviating this problem by enabling
automatic, regularly and secure reconciliation of various PHR
data by establishing a secure channel using PKA. The idea is to
use PHR-based physiological signal time series and generative
models on one end and the actual physiological data at the
aggregator (user’s) end. Assuming one can identify the PHRs
associated with a user is known, then PHR reconciliation can
be done as follows:

• The aggregator A uses the user’s actual physiological
signal S A, derives frequency-domain features from it and
uses it to hide a session key and sends it to a PHR (PHRA)
containing user data.

• If PHRB uses the generative model GA to generate
synthetic signals, derive frequency-domain features and
unhide the key.

PHRB can populate its model GA using the physiological
time-series S B is has it ins database. If S A and S B are
the same, the GA can be easily created using the temporal
and morphological characteristics derived from S B using our
approach described in [15]. If the signals and however coherent
or non-coherent, then the GA creation will require mA being
also stored at the PHRB. This can be done when the PHR is
initialized before data collection begins.



VI. Tamper-evident logging system

At the core of our approach is a tamper-evident logging
system that records information from all of the devices in the
system. Importantly, this log guarantees information will be
recorded without modification, even if the logger itself is not
trustworthy. At a high-level, our forensic logging system will
have the following components: sensors which record infor-
mation in the log; a logger sitting on a resource-capable device
(e.g., the base station) which collects and stores the records,
and auditors which use periodic cryptographic challenges to
verify the untrusted logger has not tampered with the log.
We assume both the logger and any of the clients can be
compromised. However, if any auditor remains secure we can
detect any tampering.

We use a centralized log to minimize the resource require-
ments for the sensors and provide a canonical ordering of
system events. While we can leverage remote logs to increase
data availability and prevent compromises from deleting past
logs, using a remote log alone is insufficient as the log
must always be available to the system—we cannot assume
a connection to a remote server will always be possible.
Further, if the base station is compromised, it effectively
becomes a malicious man-in-the-middle that can manipulate
all communication with the remote log, rendering the log
ineffective. The forensic logger must record the information
sufficient for understanding a previously unobserved attack
against the system, but the investigator must also be able to
locate this relevant information in the deluge of all possible
data the system can log.

In a CHMS the relevancy of data depends on the context
information. Hence, the investigator driven logger can use the
current context information to determine which data is relevant
and shows in consistencies with the current context. Since
the context is a dynamic variable, the attacker does not have
the opportunity to plan ahead and tamper data such that it
also agrees with the context information. Hence an investigator
driven logger which takes into account the context information
to determine anomalies is most likely to be successful.

VII. Conclusions and FutureWork

In this paper, we outline a physiological value based system
wide security protocol (PySIS). which uses the concept of
generative models (which generate synthetic physiological
signals for a user) to extend PKA to enable end-to-end infor-
mation security in CHMS from the sensors to the PHR. Such
association can be used to provide information security such
as maintaining privacy, authentication, and message integrity
during the data collection and reconciliation process within
CHMS. An important contribution in this paper is the usage
of physiological signal based security between entities with
access to different types of physiological signals. In the future,
we plan to expand this work to improve the performance of
PySIS for non-coherent signals as state above.

While the proposed tamper-evident logging scheme pro-
vides a solid foundation for forensic analysis, there other
fundamental questions that must be still addressed. (1) How
do we provide forensic guarantees in the face of backwards
compatibility, allowing unmodified devices to join our system
with only a minimal loss of auditing capability? (2) How do we

construct and use forensic summaries of the event to identify
similar failures in the wearable systems of other patients?
Identifying such matches are important to understanding attack
trends across the entire population.
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